Comprehensive 研究合作 Tools for Every Need

Get access to 研究合作 solutions that address multiple requirements. One-stop resources for streamlined workflows.

研究合作

  • A collection of customizable grid-world environments compatible with OpenAI Gym for reinforcement learning algorithm development and testing.
    0
    0
    What is GridWorldEnvs?
    GridWorldEnvs offers a comprehensive suite of grid-world environments to support the design, testing, and benchmarking of reinforcement learning and multi-agent systems. Users can easily configure grid dimensions, agent start positions, goal locations, obstacles, reward structures, and action spaces. The library includes ready-to-use templates such as classic grid navigation, obstacle avoidance, and cooperative tasks, while also allowing custom scenario definitions via JSON or Python classes. Seamless integration with the OpenAI Gym API means that standard RL algorithms can be applied directly. Additionally, GridWorldEnvs supports single-agent and multi-agent experiments, logging, and visualization utilities for tracking agent performance.
  • NeuralABM trains neural-network-driven agents to simulate complex behaviors and environments in agent-based modeling scenarios.
    0
    0
    What is NeuralABM?
    NeuralABM is an open-source Python library that leverages PyTorch to integrate neural networks into agent-based modeling. Users can specify agent architectures as neural modules, define environment dynamics, and train agent behaviors using backpropagation across simulation steps. The framework supports custom reward signals, curriculum learning, and synchronous or asynchronous updates, enabling the study of emergent phenomena. With utilities for logging, visualization, and dataset export, researchers and developers can analyze agent performance, debug models, and iterate on simulation designs. NeuralABM simplifies combining reinforcement learning with ABM for applications in social science, economics, robotics, and AI-driven game NPC behaviors. It provides modular components for environment customization, supports multi-agent interactions, and offers hooks for integrating external datasets or APIs for real-world simulations. The open design fosters reproducibility and collaboration through clear experiment configuration and version control integration.
Featured