Comprehensive 多代理強化學習 Tools for Every Need

Get access to 多代理強化學習 solutions that address multiple requirements. One-stop resources for streamlined workflows.

多代理強化學習

  • A DRL pipeline that resets underperforming agents to previous top performers to improve multi-agent reinforcement learning stability and performance.
    0
    0
    What is Selective Reincarnation for Multi-Agent Reinforcement Learning?
    Selective Reincarnation introduces a dynamic population-based training mechanism tailored for multi-agent reinforcement learning. Each agent’s performance is regularly evaluated against predefined thresholds. When an agent’s performance falls below its peers, its weights are reset to those of the current top performer, effectively reincarnating it with proven behaviors. This approach maintains diversity by only resetting underperformers, minimizing destructive resets while guiding exploration toward high-reward policies. By enabling targeted heredity of neural network parameters, the pipeline reduces variance and accelerates convergence across cooperative or competitive multi-agent environments. Compatible with any policy gradient-based MARL algorithm, the implementation integrates seamlessly into PyTorch-based workflows and includes configurable hyperparameters for evaluation frequency, selection criteria, and reset strategy tuning.
  • Provides customizable multi-agent patrolling environments in Python with various maps, agent configurations, and reinforcement learning interfaces.
    0
    0
    What is Patrolling-Zoo?
    Patrolling-Zoo offers a flexible framework enabling users to create and experiment with multi-agent patrolling tasks in Python. The library includes a variety of grid-based and graph-based environments, each simulating surveillance, monitoring, and coverage scenarios. Users can configure the number of agents, map size, topology, reward functions, and observation spaces. Through compatibility with PettingZoo and Gym APIs, it supports seamless integration with popular reinforcement learning algorithms. This environment facilitates benchmarking and comparing MARL techniques under consistent settings. By providing standard scenarios and tools to customize new ones, Patrolling-Zoo accelerates research in autonomous robotics, security surveillance, search-and-rescue operations, and efficient area coverage using multi-agent coordination strategies.
  • Ant_racer is a virtual multi-agent pursuit-evasion platform using OpenAI/Gym and Mujoco.
    0
    0
    What is Ant_racer?
    Ant_racer is a virtual multi-agent pursuit-evasion platform that provides a game environment for studying multi-agent reinforcement learning. Built on OpenAI Gym and Mujoco, it allows users to simulate interactions between multiple autonomous agents in pursuit and evasion tasks. The platform supports implementation and testing of reinforcement learning algorithms such as DDPG in a physically realistic environment. It is useful for researchers and developers interested in AI multi-agent behaviors in dynamic scenarios.
  • MARTI is an open-source toolkit offering standardized environments and benchmarking tools for multi-agent reinforcement learning experiments.
    0
    0
    What is MARTI?
    MARTI (Multi-Agent Reinforcement learning Toolkit and Interface) is a research-oriented framework that streamlines the development, evaluation, and benchmarking of multi-agent RL algorithms. It offers a plug-and-play architecture where users can configure custom environments, agent policies, reward structures, and communication protocols. MARTI integrates with popular deep learning libraries, supports GPU acceleration and distributed training, and generates detailed logs and visualizations for performance analysis. The toolkit’s modular design allows rapid prototyping of novel approaches and systematic comparison against standard baselines, making it ideal for academic research and pilot projects in autonomous systems, robotics, game AI, and cooperative multi-agent scenarios.
  • Implements decentralized multi-agent DDPG reinforcement learning using PyTorch and Unity ML-Agents for collaborative agent training.
    0
    0
    What is Multi-Agent DDPG with PyTorch & Unity ML-Agents?
    This open-source project delivers a complete multi-agent reinforcement learning framework built on PyTorch and Unity ML-Agents. It offers decentralized DDPG algorithms, environment wrappers, and training scripts. Users can configure agent policies, critic networks, replay buffers, and parallel training workers. Logging hooks allow TensorBoard monitoring, while modular code supports custom reward functions and environment parameters. The repository includes sample Unity scenes demonstrating collaborative navigation tasks, making it ideal for extending and benchmarking multi-agent scenarios in simulation.
  • Shepherding is a Python-based RL framework for training AI agents to herd and guide multiple agents in simulations.
    0
    0
    What is Shepherding?
    Shepherding is an open-source simulation framework designed for reinforcement learning researchers and developers to study and implement multi-agent herding tasks. It provides a Gym-compatible environment where agents can be trained to perform behaviors such as flanking, collecting, and dispersing target groups across continuous or discrete spaces. The framework includes modular reward shaping functions, environment parameterization, and logging utilities for monitoring training performance. Users can define obstacles, dynamic agent populations, and custom policies using TensorFlow or PyTorch. Visualization scripts generate trajectory plots and video recordings of agent interactions. Shepherding’s modular design allows seamless integration with existing RL libraries, enabling reproducible experiments, benchmarking of novel coordination strategies, and rapid prototyping of AI-driven herding solutions.
  • Gym-compatible multi-agent reinforcement learning environment offering customizable scenarios, rewards, and agent communication.
    0
    0
    What is DeepMind MAS Environment?
    DeepMind MAS Environment is a Python library that provides a standardized interface for building and simulating multi-agent reinforcement learning tasks. It allows users to configure number of agents, define observation and action spaces, and customize reward structures. The framework supports agent-to-agent communication channels, performance logging, and rendering capabilities. Researchers can seamlessly integrate DeepMind MAS Environment with popular RL libraries such as TensorFlow and PyTorch to benchmark new algorithms, test communication protocols, and analyze both discrete and continuous control domains.
Featured