Comprehensive Umgebungswrapper Tools for Every Need

Get access to Umgebungswrapper solutions that address multiple requirements. One-stop resources for streamlined workflows.

Umgebungswrapper

  • Open-source Python library that implements mean-field multi-agent reinforcement learning for scalable training in large agent systems.
    0
    0
    What is Mean-Field MARL?
    Mean-Field MARL provides a robust Python framework for implementing and evaluating mean-field multi-agent reinforcement learning algorithms. It approximates large-scale agent interactions by modeling the average effect of neighboring agents via mean-field Q-learning. The library includes environment wrappers, agent policy modules, training loops, and evaluation metrics, enabling scalable training across hundreds of agents. Built on PyTorch for GPU acceleration, it supports customizable environments like Particle World and Gridworld. Modular design allows easy extension with new algorithms, while built-in logging and Matplotlib-based visualization tools track rewards, loss curves, and mean-field distributions. Example scripts and documentation guide users through setup, experiment configuration, and result analysis, making it ideal for both research and prototyping of large-scale multi-agent systems.
    Mean-Field MARL Core Features
    • Mean-field Q-learning algorithm implementations
    • Environment wrappers for Particle World and Gridworld
    • Scalable training pipelines for hundreds of agents
    • Modular policy, training, and evaluation modules
    • PyTorch-based GPU acceleration
    • Built-in logging and Matplotlib visualization
  • Dead-simple self-learning is a Python library providing simple APIs for building, training, and evaluating reinforcement learning agents.
    0
    0
    What is dead-simple-self-learning?
    Dead-simple self-learning offers developers a dead-simple approach to create and train reinforcement learning agents in Python. The framework abstracts core RL components, such as environment wrappers, policy modules, and experience buffers, into concise interfaces. Users can quickly initialize environments, define custom policies using familiar PyTorch or TensorFlow backends, and execute training loops with built-in logging and checkpointing. The library supports on-policy and off-policy algorithms, enabling flexible experimentation with Q-learning, policy gradients, and actor-critic methods. By reducing boilerplate code, dead-simple self-learning allows practitioners, educators, and researchers to prototype algorithms, test hypotheses, and visualize agent performance with minimal configuration. Its modular design also facilitates integration with existing ML stacks and custom environments.
  • Acme is a modular reinforcement learning framework offering reusable agent components and efficient distributed training pipelines.
    0
    0
    What is Acme?
    Acme is a Python-based framework that simplifies the development and evaluation of reinforcement learning agents. It offers a collection of prebuilt agent implementations (e.g., DQN, PPO, SAC), environment wrappers, replay buffers, and distributed execution engines. Researchers can mix and match components to prototype new algorithms, monitor training metrics with built-in logging, and leverage scalable distributed pipelines for large-scale experiments. Acme integrates with TensorFlow and JAX, supports custom environments via OpenAI Gym interfaces, and includes utilities for checkpointing, evaluation, and hyperparameter configuration.
Featured