Comprehensive simulación de múltiples agentes Tools for Every Need

Get access to simulación de múltiples agentes solutions that address multiple requirements. One-stop resources for streamlined workflows.

simulación de múltiples agentes

  • AgentSimulation is a Python framework for real-time 2D autonomous agent simulation with customizable steering behaviors.
    0
    0
    What is AgentSimulation?
    AgentSimulation is an open-source Python library built on Pygame for simulating multiple autonomous agents in a 2D environment. It allows users to configure agent properties, steering behaviors (seek, flee, wander), collision detection, pathfinding, and interactive rules. With real-time rendering and modular design, it supports rapid prototyping, teaching simulations, and small-scale research in swarm intelligence or multi-agent interactions.
  • A Python framework that enables developers to define, coordinate, and simulate multi-agent interactions powered by large language models.
    0
    0
    What is LLM Agents Simulation Framework?
    The LLM Agents Simulation Framework enables the design, execution, and analysis of simulated environments where autonomous agents interact through large language models. Users can register multiple agent instances, assign customizable prompts and roles, and specify communication channels such as message passing or shared state. The framework orchestrates simulation cycles, collects logs, and calculates metrics like turn-taking frequency, response latency, and success rates. It supports seamless integration with OpenAI, Hugging Face, and local LLMs. Researchers can create complex scenarios—negotiation, resource allocation, or collaborative problem-solving—to observe emergent behaviors. Extensible plugin architecture allows addition of new agent behaviors, environment constraints, or visualization modules, fostering reproducible experiments.
  • A Unity ML-Agents based environment for training cooperative multi-agent inspection tasks in customizable 3D virtual scenarios.
    0
    0
    What is Multi-Agent Inspection Simulation?
    Multi-Agent Inspection Simulation provides a comprehensive framework for simulating and training multiple autonomous agents to perform inspection tasks cooperatively within Unity 3D environments. It integrates with the Unity ML-Agents toolkit, offering configurable scenes with inspection targets, adjustable reward functions, and agent behavior parameters. Researchers can script custom environments, define the number of agents, and set training curricula via Python APIs. The package supports parallel training sessions, TensorBoard logging, and customizable observations including raycasts, camera feeds, and positional data. By adjusting hyperparameters and environment complexity, users can benchmark reinforcement learning algorithms on coverage, efficiency, and coordination metrics. The open-source codebase encourages extension for robotics prototyping, cooperative AI research, and educational demonstrations in multi-agent systems.
  • A Python-based framework enabling creation and simulation of AI-driven agents with customizable behaviors and environments.
    0
    0
    What is Multi Agent Simulation?
    Multi Agent Simulation offers a flexible API to define Agent classes with custom sensors, actuators, and decision logic. Users configure environments with obstacles, resources, and communication protocols, then run step-based or real-time simulation loops. Built-in logging, event scheduling, and Matplotlib integration help track agent states and visualize results. The modular design allows easy extension with new behaviors, environments, and performance optimizations, making it ideal for academic research, educational purposes, and prototyping multi-agent scenarios.
  • A reinforcement learning framework for training collision-free multi-robot navigation policies in simulated environments.
    0
    0
    What is NavGround Learning?
    NavGround Learning provides a comprehensive toolkit for developing and benchmarking reinforcement learning agents in navigation tasks. It supports multi-agent simulation, collision modeling, and customizable sensors and actuators. Users can select from predefined policy templates or implement custom architectures, train with state-of-the-art RL algorithms, and visualize performance metrics. Its integration with OpenAI Gym and Stable Baselines3 simplifies experiment management, while built-in logging and visualization tools allow in-depth analysis of agent behavior and training dynamics.
Featured