Selective Reincarnation introduces a dynamic population-based training mechanism tailored for multi-agent reinforcement learning. Each agent’s performance is regularly evaluated against predefined thresholds. When an agent’s performance falls below its peers, its weights are reset to those of the current top performer, effectively reincarnating it with proven behaviors. This approach maintains diversity by only resetting underperformers, minimizing destructive resets while guiding exploration toward high-reward policies. By enabling targeted heredity of neural network parameters, the pipeline reduces variance and accelerates convergence across cooperative or competitive multi-agent environments. Compatible with any policy gradient-based MARL algorithm, the implementation integrates seamlessly into PyTorch-based workflows and includes configurable hyperparameters for evaluation frequency, selection criteria, and reset strategy tuning.