Comprehensive path planning Tools for Every Need

Get access to path planning solutions that address multiple requirements. One-stop resources for streamlined workflows.

path planning

  • NavGround is an open-source 2D navigation framework providing reactive AI motion planning and obstacle avoidance for differential drive robots.
    0
    0
    What is NavGround?
    NavGround is a comprehensive AI-driven navigation framework that delivers reactive motion planning, obstacle avoidance, and trajectory generation for differential drive and holonomic robots in 2D environments. It integrates dynamic map representations and sensor fusion to detect static and moving obstacles, applying velocity obstacle methods to compute collision-free velocities adhering to robot kinematics and dynamics. The lightweight C++ library offers a modular API with ROS support, enabling seamless integration with SLAM systems, path planners, and control loops. NavGround’s real-time performance and on-the-fly adaptability make it suitable for service robots, autonomous vehicles, and research prototypes operating in cluttered or dynamic scenarios. The framework’s customizable cost functions and extensible architecture facilitate rapid experimentation and optimization of navigation behaviors.
  • A Python-based multi-agent robotic framework enabling autonomous coordination, path planning, and collaborative task execution across robot teams.
    0
    0
    What is Multi Agent Robotic System?
    The Multi Agent Robotic System project offers a modular Python-based platform for developing, simulating, and deploying cooperative robotic teams. At its core, it implements decentralized control strategies, enabling robots to share state information and collaboratively allocate tasks without a central coordinator. The system includes built-in modules for path planning, collision avoidance, environment mapping, and dynamic task scheduling. Developers can integrate new algorithms by extending provided interfaces, adjust communication protocols via configuration files, and visualize robot interactions in simulated environments. Compatible with ROS, it supports seamless transitions from simulation to real-world hardware deployments. This framework accelerates research by providing reusable components for swarm behavior, collaborative exploration, and warehouse automation experiments.
Featured