Comprehensive optimisation de politiques Tools for Every Need

Get access to optimisation de politiques solutions that address multiple requirements. One-stop resources for streamlined workflows.

optimisation de politiques

  • Jason-RL equips Jason BDI agents with reinforcement learning, enabling Q-learning and SARSA-based adaptive decision making through reward experience.
    0
    0
    What is jason-RL?
    jason-RL adds a reinforcement learning layer to the Jason multi-agent framework, allowing AgentSpeak BDI agents to learn action-selection policies via reward feedback. It implements Q-learning and SARSA algorithms, supports configuration of learning parameters (learning rate, discount factor, exploration strategy), and logs training metrics. By defining reward functions in agent plans and running simulations, developers can observe agents improve decision making over time, adapting to changing environments without manual policy coding.
    jason-RL Core Features
    • Q-learning integration
    • SARSA integration
    • Configurable learning parameters
    • Reward function support
    • Training metric logging
  • MAGAIL enables multiple agents to imitate expert demonstration via generative adversarial training, facilitating flexible multi-agent policy learning.
    0
    0
    What is MAGAIL?
    MAGAIL implements a multi-agent extension of Generative Adversarial Imitation Learning, enabling groups of agents to learn coordinated behaviors from expert demonstrations. Built in Python with support for PyTorch (or TensorFlow variants), MAGAIL consists of policy (generator) and discriminator modules that are trained in an adversarial loop. Agents generate trajectories in environments like OpenAI Multi-Agent Particle Environment or PettingZoo, which the discriminator uses to evaluate authenticity against expert data. Through iterative updates, policy networks converge to expert-like strategies without explicit reward functions. MAGAIL’s modular design allows customization of network architectures, expert data ingestion, environment integration, and training hyperparameters. Additionally, built-in logging and TensorBoard visualization facilitate monitoring and analysis of multi-agent learning progress and performance benchmarks.
Featured