Comprehensive Benchmarking Tools for Every Need

Get access to Benchmarking solutions that address multiple requirements. One-stop resources for streamlined workflows.

Benchmarking

  • An open-source Python framework offering diverse multi-agent reinforcement learning environments for training and benchmarking AI agents.
    0
    0
    What is multiagent_envs?
    multiagent_envs delivers a modular set of Python-based environments tailored for multi-agent reinforcement learning research and development. It includes scenarios like cooperative navigation, predator-prey, social dilemmas, and competitive arenas. Each environment lets you define the number of agents, observation features, reward functions, and collision dynamics. The framework integrates seamlessly with popular RL libraries such as Stable Baselines and RLlib, allowing vectorized training loops, parallel execution, and easy logging. Users can extend existing scenarios or create new ones by following a simple API, accelerating experimentation with algorithms like MADDPG, QMIX, and PPO in a consistent, reproducible setup.
  • Pits and Orbs offers a multi-agent grid-world environment where AI agents avoid pitfalls, collect orbs, and compete in turn-based scenarios.
    0
    0
    What is Pits and Orbs?
    Pits and Orbs is an open-source reinforcement learning environment implemented in Python, offering a turn-based multi-agent grid-world where agents pursue objectives and face environmental hazards. Each agent must navigate a customizable grid, avoid randomly placed pits that penalize or terminate episodes, and collect orbs for positive rewards. The environment supports both competitive and cooperative modes, enabling researchers to explore varied learning scenarios. Its simple API integrates seamlessly with popular RL libraries like Stable Baselines or RLlib. Key features include adjustable grid dimensions, dynamic pit and orb distributions, configurable reward structures, and optional logging for training analysis.
  • PyGame Learning Environment provides a collection of Pygame-based RL environments for training and evaluating AI agents in classic games.
    0
    0
    What is PyGame Learning Environment?
    PyGame Learning Environment (PLE) is an open-source Python framework designed to simplify the development, testing, and benchmarking of reinforcement learning agents within custom game scenarios. It provides a collection of lightweight Pygame-based games with built-in support for agent observations, discrete and continuous action spaces, reward shaping, and environment rendering. PLE features an easy-to-use API compatible with OpenAI Gym wrappers, enabling seamless integration with popular RL libraries such as Stable Baselines and TensorForce. Researchers and developers can customize game parameters, implement new games, and leverage vectorized environments for accelerated training. With active community contributions and extensive documentation, PLE serves as a versatile platform for academic research, education, and real-world RL application prototyping.
  • Scalable MADDPG is an open-source multi-agent reinforcement learning framework implementing deep deterministic policy gradient for multiple agents.
    0
    0
    What is Scalable MADDPG?
    Scalable MADDPG is a research-oriented framework for multi-agent reinforcement learning, offering a scalable implementation of the MADDPG algorithm. It features centralized critics during training and independent actors at runtime for stability and efficiency. The library includes Python scripts to define custom environments, configure network architectures, and adjust hyperparameters. Users can train multiple agents in parallel, monitor metrics, and visualize learning curves. It integrates with OpenAI Gym-like environments and supports GPU acceleration via TensorFlow. By providing modular components, Scalable MADDPG enables flexible experimentation on cooperative, competitive, or mixed multi-agent tasks, facilitating rapid prototyping and benchmarking.
  • Shepherding is a Python-based RL framework for training AI agents to herd and guide multiple agents in simulations.
    0
    0
    What is Shepherding?
    Shepherding is an open-source simulation framework designed for reinforcement learning researchers and developers to study and implement multi-agent herding tasks. It provides a Gym-compatible environment where agents can be trained to perform behaviors such as flanking, collecting, and dispersing target groups across continuous or discrete spaces. The framework includes modular reward shaping functions, environment parameterization, and logging utilities for monitoring training performance. Users can define obstacles, dynamic agent populations, and custom policies using TensorFlow or PyTorch. Visualization scripts generate trajectory plots and video recordings of agent interactions. Shepherding’s modular design allows seamless integration with existing RL libraries, enabling reproducible experiments, benchmarking of novel coordination strategies, and rapid prototyping of AI-driven herding solutions.
  • A Keras-based implementation of Multi-Agent Deep Deterministic Policy Gradient for cooperative and competitive multi-agent RL.
    0
    0
    What is MADDPG-Keras?
    MADDPG-Keras delivers a complete framework for multi-agent reinforcement learning research by implementing the MADDPG algorithm in Keras. It supports continuous action spaces, multiple agents, and standard OpenAI Gym environments. Researchers and developers can configure neural network architectures, training hyperparameters, and reward functions, then launch experiments with built-in logging and model checkpointing to accelerate multi-agent policy learning and benchmarking.
  • An AI agent framework orchestrating multiple translation agents to generate, refine, and evaluate machine translations collaboratively.
    0
    0
    What is AI-Agentic Machine Translation?
    AI-Agentic Machine Translation is an open-source framework designed for research and development in machine translation. It orchestrates three core agents—a generator, an evaluator, and a refiner—to collaboratively produce, assess, and refine translations. Built on PyTorch and transformer models, the system supports supervised pre-training, reinforcement learning optimization, and configurable agent policies. Users can benchmark on standard datasets, track BLEU scores, and extend the pipeline with custom agents or reward functions to explore agentic collaboration in translation tasks.
  • An open-source reinforcement learning environment to optimize building energy management, microgrid control and demand response strategies.
    0
    0
    What is CityLearn?
    CityLearn provides a modular simulation platform for energy management research using reinforcement learning. Users can define multi-zone building clusters, configure HVAC systems, storage units, and renewable sources, then train RL agents against demand response events. The environment exposes state observations like temperatures, load profiles, and energy prices, while actions control setpoints and storage dispatch. A flexible reward API allows custom metrics—such as cost savings or emission reductions—and logging utilities support performance analysis. CityLearn is ideal for benchmarking, curriculum learning, and developing novel control strategies in a reproducible research framework.
Featured