Comprehensive aprendizaje por refuerzo multiagente Tools for Every Need

Get access to aprendizaje por refuerzo multiagente solutions that address multiple requirements. One-stop resources for streamlined workflows.

aprendizaje por refuerzo multiagente

  • A Python-based multi-agent reinforcement learning environment for cooperative search tasks with configurable communication and rewards.
    0
    0
    What is Cooperative Search Environment?
    Cooperative Search Environment provides a flexible, gym-compatible multi-agent reinforcement learning environment tailored for cooperative search tasks in both discrete grid and continuous spaces. Agents operate under partial observability and can share information based on customizable communication topologies. The framework supports predefined scenarios like search-and-rescue, dynamic target tracking, and collaborative mapping, with APIs to define custom environments and reward structures. It integrates seamlessly with popular RL libraries such as Stable Baselines3 and Ray RLlib, includes logging utilities for performance analysis, and offers built-in visualization tools for real-time monitoring. Researchers can adjust grid sizes, agent counts, sensor ranges, and reward sharing mechanisms to evaluate coordination strategies and benchmark new algorithms effectively.
  • CrewAI-Learning enables collaborative multi-agent reinforcement learning with customizable environments and built-in training utilities.
    0
    0
    What is CrewAI-Learning?
    CrewAI-Learning is an open-source library designed to streamline multi-agent reinforcement learning projects. It offers environment scaffolding, modular agent definitions, customizable reward functions, and a suite of built-in algorithms such as DQN, PPO, and A3C adapted for collaborative tasks. Users can define scenarios, manage training loops, log metrics, and visualize results. The framework supports dynamic configuration of agent teams and reward sharing strategies, making it easy to prototype, evaluate, and optimize cooperative AI solutions across various domains.
  • MARL-DPP implements multi-agent reinforcement learning with diversity via Determinantal Point Processes to encourage varied coordinated policies.
    0
    0
    What is MARL-DPP?
    MARL-DPP is an open-source framework enabling multi-agent reinforcement learning (MARL) with enforced diversity through Determinantal Point Processes (DPP). Traditional MARL approaches often suffer from policy convergence to similar behaviors; MARL-DPP addresses this by incorporating DPP-based measures to encourage agents to maintain diverse action distributions. The toolkit provides modular code for embedding DPP in training objectives, sampling policies, and managing exploration. It includes ready-to-use integration with standard OpenAI Gym environments and the Multi-Agent Particle Environment (MPE), along with utilities for hyperparameter management, logging, and visualization of diversity metrics. Researchers can evaluate the impact of diversity constraints on cooperative tasks, resource allocation, and competitive games. The extensible design supports custom environments and advanced algorithms, facilitating exploration of novel MARL-DPP variants.
  • An open-source multi-agent reinforcement learning simulator enabling scalable parallel training, customizable environments, and agent communication protocols.
    0
    0
    What is MARL Simulator?
    The MARL Simulator is designed to facilitate efficient and scalable development of multi-agent reinforcement learning (MARL) algorithms. Leveraging PyTorch's distributed backend, it allows users to run parallel training across multiple GPUs or nodes, significantly reducing experiment runtime. The simulator offers a modular environment interface that supports standard benchmark scenarios—such as cooperative navigation, predator-prey, and grid world—as well as user-defined custom environments. Agents can utilize various communication protocols to coordinate actions, share observations, and synchronize rewards. Configurable reward and observation spaces enable fine-grained control over training dynamics, while built-in logging and visualization tools provide real-time insights into performance metrics.
  • MARTI is an open-source toolkit offering standardized environments and benchmarking tools for multi-agent reinforcement learning experiments.
    0
    0
    What is MARTI?
    MARTI (Multi-Agent Reinforcement learning Toolkit and Interface) is a research-oriented framework that streamlines the development, evaluation, and benchmarking of multi-agent RL algorithms. It offers a plug-and-play architecture where users can configure custom environments, agent policies, reward structures, and communication protocols. MARTI integrates with popular deep learning libraries, supports GPU acceleration and distributed training, and generates detailed logs and visualizations for performance analysis. The toolkit’s modular design allows rapid prototyping of novel approaches and systematic comparison against standard baselines, making it ideal for academic research and pilot projects in autonomous systems, robotics, game AI, and cooperative multi-agent scenarios.
  • MGym provides customizable multi-agent reinforcement learning environments with a standardized API for environment creation, simulation, and benchmarking.
    0
    0
    What is MGym?
    MGym is a specialized framework for crafting and managing multi-agent reinforcement learning (MARL) environments in Python. It enables users to define complex scenarios with multiple agents, each having customizable observation and action spaces, reward functions, and interaction rules. MGym supports both synchronous and asynchronous execution modes, providing parallel and turn-based agent simulations. Built with a familiar Gym-like API, MGym seamlessly integrates with popular RL libraries such as Stable Baselines, RLlib, and PyTorch. It includes utility modules for environment benchmarking, result visualization, and performance analytics, facilitating systematic evaluation of MARL algorithms. Its modular architecture allows rapid prototyping of cooperative, competitive, or mixed-agent tasks, empowering researchers and developers to accelerate MARL experimentation and research.
  • An RL environment simulating multiple cooperative and competitive agent miners collecting resources in a grid-based world for multi-agent learning.
    0
    0
    What is Multi-Agent Miners?
    Multi-Agent Miners offers a grid-world environment where multiple autonomous miner agents navigate, dig, and collect resources while interacting with each other. It supports configurable map sizes, agent counts, and reward structures, allowing users to create competitive or cooperative scenarios. The framework integrates with popular RL libraries via PettingZoo, providing standardized APIs for reset, step, and render functions. Visualization modes and logging support help analyze behaviors and outcomes, making it ideal for research, education, and algorithm benchmarking in multi-agent reinforcement learning.
  • An open-source framework for training and evaluating cooperative and competitive multi-agent reinforcement learning algorithms across diverse environments.
    0
    0
    What is Multi-Agent Reinforcement Learning?
    Multi-Agent Reinforcement Learning by alaamoheb is a comprehensive open-source library designed to facilitate the development, training, and evaluation of multiple agents acting in shared environments. It includes modular implementations of value-based and policy-based algorithms such as DQN, PPO, MADDPG, and more. The repository supports integration with OpenAI Gym, Unity ML-Agents, and the StarCraft Multi-Agent Challenge, allowing users to experiment in both research and real-world inspired scenarios. With configurable YAML-based experiment setups, logging utilities, and visualization tools, practitioners can monitor learning curves, tune hyperparameters, and compare different algorithms. This framework accelerates experimentation in cooperative, competitive, and mixed multi-agent tasks, streamlining reproducible research and benchmarking.
  • Implements decentralized multi-agent DDPG reinforcement learning using PyTorch and Unity ML-Agents for collaborative agent training.
    0
    0
    What is Multi-Agent DDPG with PyTorch & Unity ML-Agents?
    This open-source project delivers a complete multi-agent reinforcement learning framework built on PyTorch and Unity ML-Agents. It offers decentralized DDPG algorithms, environment wrappers, and training scripts. Users can configure agent policies, critic networks, replay buffers, and parallel training workers. Logging hooks allow TensorBoard monitoring, while modular code supports custom reward functions and environment parameters. The repository includes sample Unity scenes demonstrating collaborative navigation tasks, making it ideal for extending and benchmarking multi-agent scenarios in simulation.
  • A Python-based multi-agent reinforcement learning environment with a gym-like API supporting customizable cooperative and competitive scenarios.
    0
    0
    What is multiagent-env?
    multiagent-env is an open-source Python library designed to simplify the creation and evaluation of multi-agent reinforcement learning environments. Users can define both cooperative and adversarial scenarios by specifying agent count, action and observation spaces, reward functions, and environmental dynamics. It supports real-time visualization, configurable rendering, and easy integration with Python-based RL frameworks such as Stable Baselines and RLlib. The modular design allows rapid prototyping of new scenarios and straightforward benchmarking of multi-agent algorithms.
  • Implements prediction-based reward sharing across multiple reinforcement learning agents to facilitate cooperative strategy development and evaluation.
    0
    0
    What is Multiagent-Prediction-Reward?
    Multiagent-Prediction-Reward is a research-oriented framework that integrates prediction models and reward distribution mechanisms for multi-agent reinforcement learning. It includes environment wrappers, neural modules for forecasting peer actions, and customizable reward routing logic that adapts to agent performance. The repository provides configuration files, example scripts, and evaluation dashboards to run experiments on cooperative tasks. Users can extend the code to test novel reward functions, integrate new environments, and benchmark against established multi-agent RL algorithms.
  • Open-source Python framework implementing multi-agent reinforcement learning algorithms for cooperative and competitive environments.
    0
    0
    What is MultiAgent-ReinforcementLearning?
    This repository provides a complete suite of multi-agent reinforcement learning algorithms—including MADDPG, DDPG, PPO, and more—integrated with standard benchmarks like the Multi-Agent Particle Environment and OpenAI Gym. It features customizable environment wrappers, configurable training scripts, real-time logging, and performance evaluation metrics. Users can easily extend algorithms, adapt to custom tasks, and compare policies across cooperative and adversarial settings with minimal setup.
  • An open-source Python framework offering diverse multi-agent reinforcement learning environments for training and benchmarking AI agents.
    0
    0
    What is multiagent_envs?
    multiagent_envs delivers a modular set of Python-based environments tailored for multi-agent reinforcement learning research and development. It includes scenarios like cooperative navigation, predator-prey, social dilemmas, and competitive arenas. Each environment lets you define the number of agents, observation features, reward functions, and collision dynamics. The framework integrates seamlessly with popular RL libraries such as Stable Baselines and RLlib, allowing vectorized training loops, parallel execution, and easy logging. Users can extend existing scenarios or create new ones by following a simple API, accelerating experimentation with algorithms like MADDPG, QMIX, and PPO in a consistent, reproducible setup.
  • Scalable MADDPG is an open-source multi-agent reinforcement learning framework implementing deep deterministic policy gradient for multiple agents.
    0
    0
    What is Scalable MADDPG?
    Scalable MADDPG is a research-oriented framework for multi-agent reinforcement learning, offering a scalable implementation of the MADDPG algorithm. It features centralized critics during training and independent actors at runtime for stability and efficiency. The library includes Python scripts to define custom environments, configure network architectures, and adjust hyperparameters. Users can train multiple agents in parallel, monitor metrics, and visualize learning curves. It integrates with OpenAI Gym-like environments and supports GPU acceleration via TensorFlow. By providing modular components, Scalable MADDPG enables flexible experimentation on cooperative, competitive, or mixed multi-agent tasks, facilitating rapid prototyping and benchmarking.
  • An open-source framework implementing cooperative multi-agent reinforcement learning for autonomous driving coordination in simulation.
    0
    0
    What is AutoDRIVE Cooperative MARL?
    AutoDRIVE Cooperative MARL is a GitHub-hosted framework combining the AutoDRIVE urban driving simulator with adaptable multi-agent reinforcement learning algorithms. It includes training scripts, environment wrappers, evaluation metrics, and visualization tools to develop and benchmark cooperative driving policies. Users can configure agent observation spaces, reward functions, and training hyperparameters. The repository supports modular extensions, enabling custom task definitions, curriculum learning, and performance tracking for autonomous vehicle coordination research.
  • Gym-compatible multi-agent reinforcement learning environment offering customizable scenarios, rewards, and agent communication.
    0
    0
    What is DeepMind MAS Environment?
    DeepMind MAS Environment is a Python library that provides a standardized interface for building and simulating multi-agent reinforcement learning tasks. It allows users to configure number of agents, define observation and action spaces, and customize reward structures. The framework supports agent-to-agent communication channels, performance logging, and rendering capabilities. Researchers can seamlessly integrate DeepMind MAS Environment with popular RL libraries such as TensorFlow and PyTorch to benchmark new algorithms, test communication protocols, and analyze both discrete and continuous control domains.
  • A Keras-based implementation of Multi-Agent Deep Deterministic Policy Gradient for cooperative and competitive multi-agent RL.
    0
    0
    What is MADDPG-Keras?
    MADDPG-Keras delivers a complete framework for multi-agent reinforcement learning research by implementing the MADDPG algorithm in Keras. It supports continuous action spaces, multiple agents, and standard OpenAI Gym environments. Researchers and developers can configure neural network architectures, training hyperparameters, and reward functions, then launch experiments with built-in logging and model checkpointing to accelerate multi-agent policy learning and benchmarking.
  • Open-source Python library that implements mean-field multi-agent reinforcement learning for scalable training in large agent systems.
    0
    0
    What is Mean-Field MARL?
    Mean-Field MARL provides a robust Python framework for implementing and evaluating mean-field multi-agent reinforcement learning algorithms. It approximates large-scale agent interactions by modeling the average effect of neighboring agents via mean-field Q-learning. The library includes environment wrappers, agent policy modules, training loops, and evaluation metrics, enabling scalable training across hundreds of agents. Built on PyTorch for GPU acceleration, it supports customizable environments like Particle World and Gridworld. Modular design allows easy extension with new algorithms, while built-in logging and Matplotlib-based visualization tools track rewards, loss curves, and mean-field distributions. Example scripts and documentation guide users through setup, experiment configuration, and result analysis, making it ideal for both research and prototyping of large-scale multi-agent systems.
  • Provides customizable multi-agent patrolling environments in Python with various maps, agent configurations, and reinforcement learning interfaces.
    0
    0
    What is Patrolling-Zoo?
    Patrolling-Zoo offers a flexible framework enabling users to create and experiment with multi-agent patrolling tasks in Python. The library includes a variety of grid-based and graph-based environments, each simulating surveillance, monitoring, and coverage scenarios. Users can configure the number of agents, map size, topology, reward functions, and observation spaces. Through compatibility with PettingZoo and Gym APIs, it supports seamless integration with popular reinforcement learning algorithms. This environment facilitates benchmarking and comparing MARL techniques under consistent settings. By providing standard scenarios and tools to customize new ones, Patrolling-Zoo accelerates research in autonomous robotics, security surveillance, search-and-rescue operations, and efficient area coverage using multi-agent coordination strategies.
Featured