Comprehensive aceleração por GPU Tools for Every Need

Get access to aceleração por GPU solutions that address multiple requirements. One-stop resources for streamlined workflows.

aceleração por GPU

  • An RL-based AI agent that learns optimal betting strategies to play heads-up limit Texas Hold'em poker efficiently.
    0
    0
    What is TexasHoldemAgent?
    TexasHoldemAgent provides a modular environment built on Python to train, evaluate, and deploy an AI-powered poker player for heads-up limit Texas Hold’em. It integrates a custom simulation engine with deep reinforcement learning algorithms, including DQN, for iterative policy improvement. Key capabilities include hand state encoding, action space definition (fold, call, raise), reward shaping, and real-time decision evaluation. Users can customize learning parameters, leverage CPU/GPU acceleration, monitor training progress, and load or save trained models. The framework supports batch simulation to test various strategies, generate performance metrics, and visualize win rates, empowering researchers, developers, and poker enthusiasts to experiment with AI-driven gameplay strategies.
  • MAPF_G2RL is a Python framework training deep reinforcement learning agents for efficient multi-agent path finding on graphs.
    0
    0
    What is MAPF_G2RL?
    MAPF_G2RL is an open-source research framework that bridges graph theory and deep reinforcement learning to tackle the multi-agent path finding (MAPF) problem. It encodes nodes and edges into vector representations, defines spatial and collision-aware reward functions, and supports various RL algorithms such as DQN, PPO, and A2C. The framework automates scenario creation by generating random graphs or importing real-world maps, and orchestrates training loops that optimize policies for multiple agents simultaneously. After learning, agents are evaluated in simulated environments to measure path optimality, makespan, and success rates. Its modular design allows researchers to extend core components, integrate new MARL techniques, and benchmark against classical solvers.
  • A Keras-based implementation of Multi-Agent Deep Deterministic Policy Gradient for cooperative and competitive multi-agent RL.
    0
    0
    What is MADDPG-Keras?
    MADDPG-Keras delivers a complete framework for multi-agent reinforcement learning research by implementing the MADDPG algorithm in Keras. It supports continuous action spaces, multiple agents, and standard OpenAI Gym environments. Researchers and developers can configure neural network architectures, training hyperparameters, and reward functions, then launch experiments with built-in logging and model checkpointing to accelerate multi-agent policy learning and benchmarking.
  • An open-source framework enabling training, deployment, and evaluation of multi-agent reinforcement learning models for cooperative and competitive tasks.
    0
    0
    What is NKC Multi-Agent Models?
    NKC Multi-Agent Models provides researchers and developers with a comprehensive toolkit for designing, training, and evaluating multi-agent reinforcement learning systems. It features a modular architecture where users define custom agent policies, environment dynamics, and reward structures. Seamless integration with OpenAI Gym allows for rapid prototyping, while support for TensorFlow and PyTorch enables flexibility in selecting learning backends. The framework includes utilities for experience replay, centralized training with decentralized execution, and distributed training across multiple GPUs. Extensive logging and visualization modules capture performance metrics, facilitating benchmarking and hyperparameter tuning. By simplifying the setup of cooperative, competitive, and mixed-motive scenarios, NKC Multi-Agent Models accelerates experimentation in domains such as autonomous vehicles, robotic swarms, and game AI.
Featured