スケーラブルな実験

  • Acme is a modular reinforcement learning framework offering reusable agent components and efficient distributed training pipelines.
    0
    0
    What is Acme?
    Acme is a Python-based framework that simplifies the development and evaluation of reinforcement learning agents. It offers a collection of prebuilt agent implementations (e.g., DQN, PPO, SAC), environment wrappers, replay buffers, and distributed execution engines. Researchers can mix and match components to prototype new algorithms, monitor training metrics with built-in logging, and leverage scalable distributed pipelines for large-scale experiments. Acme integrates with TensorFlow and JAX, supports custom environments via OpenAI Gym interfaces, and includes utilities for checkpointing, evaluation, and hyperparameter configuration.
    Acme Core Features
    • Prebuilt agent implementations (DQN, PPO, SAC, etc.)
    • Modular replay buffers and environment wrappers
    • Configurable training loops and schedulers
    • Distributed execution engine for scalable training
    • Integrated logging and evaluation utilities
    • TensorFlow and JAX compatibility
    • Checkpointing and metric tracking
  • CrewAI-Learning enables collaborative multi-agent reinforcement learning with customizable environments and built-in training utilities.
    0
    0
    What is CrewAI-Learning?
    CrewAI-Learning is an open-source library designed to streamline multi-agent reinforcement learning projects. It offers environment scaffolding, modular agent definitions, customizable reward functions, and a suite of built-in algorithms such as DQN, PPO, and A3C adapted for collaborative tasks. Users can define scenarios, manage training loops, log metrics, and visualize results. The framework supports dynamic configuration of agent teams and reward sharing strategies, making it easy to prototype, evaluate, and optimize cooperative AI solutions across various domains.
  • An open-source multi-agent reinforcement learning simulator enabling scalable parallel training, customizable environments, and agent communication protocols.
    0
    0
    What is MARL Simulator?
    The MARL Simulator is designed to facilitate efficient and scalable development of multi-agent reinforcement learning (MARL) algorithms. Leveraging PyTorch's distributed backend, it allows users to run parallel training across multiple GPUs or nodes, significantly reducing experiment runtime. The simulator offers a modular environment interface that supports standard benchmark scenarios—such as cooperative navigation, predator-prey, and grid world—as well as user-defined custom environments. Agents can utilize various communication protocols to coordinate actions, share observations, and synchronize rewards. Configurable reward and observation spaces enable fine-grained control over training dynamics, while built-in logging and visualization tools provide real-time insights into performance metrics.
Featured