Ferramentas RL-Algorithmen para todas as ocasiões

Obtenha soluções RL-Algorithmen flexíveis que atendem a diversas demandas com eficiência.

RL-Algorithmen

  • Uma estrutura de RL que oferece ferramentas de treinamento e avaliação do PPO, DQN para desenvolver agentes competitivos no jogo Pommerman.
    0
    0
    O que é PommerLearn?
    PommerLearn permite que pesquisadores e desenvolvedores treinem bots de RL multiagentes no ambiente de jogo Pommerman. Inclui implementações prontas de algoritmos populares (PPO, DQN), arquivos de configuração flexíveis para hiperparâmetros, registro e visualização automáticos de métricas de treinamento, ponto de verificação de modelos e scripts de avaliação. Sua arquitetura modular facilita a extensão com novos algoritmos, customização de ambientes e integração com bibliotecas padrão de ML como PyTorch.
  • Biblioteca de código aberto do PyTorch que fornece implementações modulares de agentes de aprendizado por reforço como DQN, PPO, SAC e mais.
    0
    0
    O que é RL-Agents?
    RL-Agents é uma estrutura de aprendizado por reforço de nível de pesquisa construída sobre PyTorch que reúne algoritmos populares de RL em métodos baseados em valor, política e ator-crítico. A biblioteca possui uma API modular de agentes, aceleração por GPU, integração perfeita com OpenAI Gym e ferramentas embutidas de registro e visualização. Os usuários podem configurar hiperparâmetros, personalizar ciclos de treinamento e fazer benchmarking de desempenho com algumas linhas de código, tornando RL-Agents ideal para pesquisa acadêmica, prototipagem e experimentação industrial.
  • Text-to-Reward aprende modelos de recompensa geral a partir de instruções em linguagem natural para guiar efetivamente agentes de RL.
    0
    0
    O que é Text-to-Reward?
    O Text-to-Reward fornece um pipeline para treinar modelos de recompensa que mapeiam descrições de tarefas ou feedback baseado em texto em valores de recompensa escalar para agentes de RL. Aproveitando arquiteturas baseadas em transformadores e ajustando finamente com dados de preferência humana coletados, o framework aprende automaticamente a interpretar instruções em linguagem natural como sinais de recompensa. Os usuários podem definir tarefas arbitrárias por meio de prompts de texto, treinar o modelo e, posteriormente, incorporar a função de recompensa aprendida em qualquer algoritmo de RL. Essa abordagem elimina a necessidade de moldar manualmente recompensas, aumenta a eficiência de amostragem e permite que agentes sigam instruções complexas de múltiplas etapas em ambientes simulados ou do mundo real.
  • CybMASDE fornece uma estrutura Python personalizável para simular e treinar cenários cooperativos de aprendizagem por reforço profundo multi-agente.
    0
    0
    O que é CybMASDE?
    CybMASDE permite que pesquisadores e desenvolvedores construam, configurem e executem simulações de múltiplos agentes com aprendizado por reforço profundo. Os usuários podem criar cenários personalizados, definir papéis de agentes e funções de recompensa, além de integrar algoritmos de RL padrão ou personalizados. A estrutura inclui servidores de ambientes, interfaces de agentes em rede, coletores de dados e utilitários de renderização. Suporta treinamento paralelo, monitoramento em tempo real e salvamento de modelos. A arquitetura modular do CybMASDE possibilita a integração fluida de novos agentes, espaços de observação e estratégias de treinamento, acelerando experimentos em controle cooperativo, comportamento de enxame, alocação de recursos e outros casos de uso multi-agente.
  • MAPF_G2RL é uma estrutura em Python que treina agentes de aprendizagem por reforço profundo para uma busca de caminho eficiente com múltiplos agentes em gráficos.
    0
    0
    O que é MAPF_G2RL?
    MAPF_G2RL é uma estrutura de pesquisa de código aberto que une teoria dos gráficos e aprendizagem por reforço profundo para resolver o problema de busca de caminho multiagente (MAPF). Ela codifica nós e arestas em representações vetoriais, define funções de recompensa espacial e conscientes de colisões, e suporta vários algoritmos de RL, como DQN, PPO e A2C. A estrutura automatiza a criação de cenários gerando gráficos aleatórios ou importando mapas do mundo real, e coordena laços de treinamento que otimizam políticas para múltiplos agentes simultaneamente. Após o aprendizado, os agentes são avaliados em ambientes simulados para medir a otimização do caminho, o tempo de execução total e as taxas de sucesso. Seu design modular permite que pesquisadores estendam componentes essenciais, integrem novas técnicas de MARL e façam benchmarks contra solucionadores clássicos.
Em Destaque