Ferramentas réglage des hyperparamètres para todas as ocasiões

Obtenha soluções réglage des hyperparamètres flexíveis que atendem a diversas demandas com eficiência.

réglage des hyperparamètres

  • Uma estrutura de RL que oferece ferramentas de treinamento e avaliação do PPO, DQN para desenvolver agentes competitivos no jogo Pommerman.
    0
    0
    O que é PommerLearn?
    PommerLearn permite que pesquisadores e desenvolvedores treinem bots de RL multiagentes no ambiente de jogo Pommerman. Inclui implementações prontas de algoritmos populares (PPO, DQN), arquivos de configuração flexíveis para hiperparâmetros, registro e visualização automáticos de métricas de treinamento, ponto de verificação de modelos e scripts de avaliação. Sua arquitetura modular facilita a extensão com novos algoritmos, customização de ambientes e integração com bibliotecas padrão de ML como PyTorch.
  • Vanilla Agents fornece implementações prontas para usar de agentes RL DQN, PPO e A2C com pipelines de treinamento personalizáveis.
    0
    0
    O que é Vanilla Agents?
    Vanilla Agents é uma estrutura leve baseada em PyTorch que fornece implementações modulares e extensíveis de agentes de reforço fundamentais. Suporta algoritmos como DQN, Double DQN, PPO e A2C, com wrappers de ambiente plugáveis compatíveis com OpenAI Gym. Os usuários podem configurar hiperparâmetros, registrar métricas de treinamento, salvar pontos de verificação e visualizar curvas de aprendizagem. A base de código é organizada para clareza, tornando-a ideal para prototipagem de pesquisa, uso educacional e benchmarking de novas ideias em RL.
  • A Acme é uma estrutura de aprendizado por reforço modular que oferece componentes de agentes reutilizáveis e pipelines de treinamento distribuído eficientes.
    0
    0
    O que é Acme?
    A Acme é uma estrutura baseada em Python que simplifica o desenvolvimento e a avaliação de agentes de aprendizado por reforço. Oferece uma coleção de implementações de agentes pré-construídos (por exemplo, DQN, PPO, SAC), wrappers de ambientes, buffers de Replay e motores de execução distribuída. Pesquisadores podem combinar componentes para criar protótipos de novos algoritmos, monitorar métricas de treinamento com registro embutido e aproveitar pipelines distribuídos escaláveis para experimentos em grande escala. A Acme integra-se com TensorFlow e JAX, suporta ambientes personalizados via interfaces OpenAI Gym e inclui utilitários para checkpointing, avaliação e configuração de hiperparâmetros.
  • Um agente de trading alimentado por IA usando aprendizado por reforço profundo para otimizar estratégias de negociação de ações e criptomoedas em mercados ao vivo.
    0
    0
    O que é Deep Trading Agent?
    Deep Trading Agent oferece um pipeline completo para trading algorítmico: ingestão de dados, simulação de ambiente compatível com OpenAI Gym, treinamento de modelos de RL profundo (por exemplo, DQN, PPO, A2C), visualização de desempenho, backtesting com dados históricos e implantação ao vivo via conectores de API de corretoras. Os usuários podem definir métricas de recompensa personalizadas, ajustar hiperparâmetros e monitorar o desempenho do agente em tempo real. Sua arquitetura modular suporta mercados de ações, forex e criptomoedas e permite fácil expansão para novas classes de ativos.
  • Estrutura de aprendizado por reforço baseada em Python que implementa Deep Q-learning para treinar um agente de IA para o jogo de dinossauro offline do Chrome.
    0
    0
    O que é Dino Reinforcement Learning?
    Dino Reinforcement Learning oferece uma caixa de ferramentas abrangente para treinar um agente de IA a jogar o jogo do dinossauro do Chrome via aprendizado por reforço. Integrando-se com uma instância headless do Chrome através do Selenium, captura quadros do jogo em tempo real e os processa em representações de estado otimizadas para entradas de redes Q profundas. O framework inclui módulos para memória de replay, exploração epsilon-greedy, modelos de redes neurais convolucionais e loops de treinamento com hiperparâmetros personalizáveis. Os usuários podem monitorar o progresso do treinamento via logs no console e salvar pontos de verificação para avaliações posteriores. Após o treinamento, o agente pode ser implantado para jogar jogos ao vivo autonomamente ou avaliado contra diferentes arquiteturas de modelos. O design modular permite substituição fácil de algoritmos de RL, tornando-o uma plataforma flexível para experimentação.
  • Agente de Deep Q-Network baseado em TensorFlow de código aberto que aprende a jogar Atari Breakout usando replay de experiência e redes alvo.
    0
    0
    O que é DQN-Deep-Q-Network-Atari-Breakout-TensorFlow?
    DQN-Deep-Q-Network-Atari-Breakout-TensorFlow fornece uma implementação completa do algoritmo DQN adaptado ao ambiente Atari Breakout. Utiliza uma rede neural convolucional para aproximar valores Q, aplica replay de experiências para quebrar correlações entre observações sequenciais e emprega uma rede alvo atualizada periodicamente para estabilizar o treinamento. O agente segue uma política epsilon-greedy para exploração e pode ser treinado do zero com entrada de pixels crus. O repositório inclui arquivos de configuração, scripts de treinamento para monitorar o crescimento da recompensa por episódios, scripts de avaliação para testar modelos treinados e utilitários TensorBoard para visualizar métricas de treinamento. Os usuários podem ajustar hiperparâmetros como taxa de aprendizagem, tamanho do buffer de replay e tamanho do lote para experimentar diferentes configurações.
  • Uma estrutura Python de código aberto que permite o design, treinamento e avaliação de sistemas de aprendizado por reforço multiagente cooperativos e competitivos.
    0
    0
    O que é MultiAgentSystems?
    O MultiAgentSystems foi projetado para simplificar o processo de construção e avaliação de aplicações de aprendizado por reforço multiagente (MARL). A plataforma inclui implementações de algoritmos de ponta como MADDPG, QMIX, VDN e treinamento centralizado com execução descentralizada. Possui wrappers de ambiente modulares compatíveis com OpenAI Gym, protocolos de comunicação para interação entre agentes e utilitários de registro para rastrear métricas como modelagem de recompensas e taxas de convergência. Pesquisadores podem personalizar arquiteturas de agentes, ajustar hiperparâmetros e simular configurações como navegação cooperativa, alocação de recursos e jogos adversariais. Com suporte integrado para PyTorch, aceleração por GPU e integração com TensorBoard, o MultiAgentSystems acelera experimentação e benchmarking em domínios colaborativos e competitivos de múltiplos agentes.
  • Uma estrutura Python que permite o design, simulação e aprendizagem por reforço de sistemas cooperativos multiagentes.
    0
    0
    O que é MultiAgentModel?
    MultiAgentModel fornece uma API unificada para definir ambientes personalizados e classes de agentes para cenários multiagentes. Os desenvolvedores podem especificar espaços de observação e ação, estruturas de recompensa e canais de comunicação. O suporte embutido para algoritmos populares de RL como PPO, DQN e A2C permite o treino com configurações mínimas. Ferramentas de visualização em tempo real ajudam a monitorar interações de agentes e métricas de desempenho. A arquitetura modular garante fácil integração de novos algoritmos e módulos personalizados. Inclui também um sistema de configuração flexível para ajuste de hiperparâmetros, utilitários de registro para rastreamento de experimentos e compatibilidade com ambientes OpenAI Gym para portabilidade sem esforço. Os usuários podem colaborar em ambientes compartilhados e reproduzir sessões gravadas para análise.
Em Destaque