Outils réglage des hyperparamètres simples et intuitifs

Explorez des solutions réglage des hyperparamètres conviviales, conçues pour simplifier vos projets et améliorer vos performances.

réglage des hyperparamètres

  • Un cadre RL offrant des outils d'entraînement et d'évaluation PPO, DQN pour développer des agents compétitifs dans le jeu Pommerman.
    0
    0
    Qu'est-ce que PommerLearn ?
    PommerLearn permet aux chercheurs et aux développeurs d'entraîner des robots RL multi-agents dans l'environnement de jeu Pommerman. Il inclut des implémentations prêt-à-l'emploi d'algorithmes populaires (PPO, DQN), des fichiers de configuration flexibles pour les hyperparamètres, une journalisation automatique et une visualisation des métriques d'entraînement, un checkpointing de modèles et des scripts d'évaluation. Son architecture modulaire facilite l'extension avec de nouveaux algorithmes, la personnalisation des environnements et l'intégration avec des bibliothèques ML standard telles que PyTorch.
  • Vanilla Agents fournit des implémentations prêtes à l'emploi d'agents RL DQN, PPO et A2C avec des pipelines de formation personnalisables.
    0
    0
    Qu'est-ce que Vanilla Agents ?
    Vanilla Agents est un cadre léger basé sur PyTorch qui fournit des implémentations modulaires et extensibles d'agents d'apprentissage par renforcement de base. Il supporte des algorithmes comme DQN, Double DQN, PPO et A2C, avec des wrappers d'environnement adaptables compatibles avec OpenAI Gym. Les utilisateurs peuvent configurer les hyperparamètres, enregistrer les métriques d'entraînement, sauvegarder les points de contrôle et visualiser les courbes d'apprentissage. La base de code est organisée pour la clarté, ce qui le rend idéal pour le prototypage de recherche, un usage éducatif et la mise en référence de nouvelles idées en RL.
  • Acme est un cadre d'apprentissage par renforcement modulaire offrant des composants d'agents réutilisables et des pipelines d'entraînement distribués efficaces.
    0
    0
    Qu'est-ce que Acme ?
    Acme est un framework basé sur Python qui simplifie le développement et l'évaluation d'agents d'apprentissage par renforcement. Il propose une collection d'implémentations d'agents préconstruites (par exemple, DQN, PPO, SAC), des enveloppes d'environnement, des tampons de répétition et des moteurs d'exécution distribués. Les chercheurs peuvent combiner et ajuster les composants pour prototyper de nouveaux algorithmes, surveiller les métriques d'entraînement avec la journalisation intégrée et exploiter des pipelines distribués évolutifs pour de large experiments. Acme s'intègre avec TensorFlow et JAX, prend en charge des environnements personnalisés via OpenAI Gym interfaces, et inclut des utilitaires pour la sauvegarde, l'évaluation et la configuration des hyperparamètres.
  • Un agent de trading alimenté par l'IA utilisant l'apprentissage par renforcement profond pour optimiser les stratégies de trading d'actions et de crypto en marchés en direct.
    0
    0
    Qu'est-ce que Deep Trading Agent ?
    Deep Trading Agent fournit une pipeline complète pour le trading algorithmique : ingestion de données, simulation d'environnement conforme à OpenAI Gym, formation de modèles RL profonds (par ex., DQN, PPO, A2C), visualisation des performances, backtesting sur des données historiques, et déploiement en direct via des connecteurs API de courtier. Les utilisateurs peuvent définir des métriques de récompense personnalisées, ajuster les hyperparamètres, et surveiller les performances de l'agent en temps réel. L'architecture modulaire supporte les marchés d'actions, Forex et crypto-monnaies, avec une extension facile vers de nouvelles classes d'actifs.
  • Frame de RL basé sur Python implémentant le deep Q-learning pour entraîner un agent IA pour le jeu de dinosaure hors ligne de Chrome.
    0
    0
    Qu'est-ce que Dino Reinforcement Learning ?
    Dino Reinforcement Learning offre une boîte à outils complète pour entraîner un agent IA à jouer au jeu de dinosaure de Chrome via reinforcement learning. En s'intégrant avec une instance Chrome sans interface via Selenium, il capture en temps réel les frames du jeu et les traite en représentations d'état optimisées pour les entrées du réseau Q profond. Le framework comprend des modules pour la mémoire de rejouement, l'exploration epsilon-greedy, des modèles de réseaux neuronaux convolutifs, et des boucles d'entraînement avec des hyperparamètres personnalisables. Les utilisateurs peuvent suivre la progression de l'entraînement via des logs en console et sauvegarder des checkpoints pour une évaluation ultérieure. Après l'entraînement, l'agent peut être déployé pour jouer en direct de manière autonome ou être testé contre différentes architectures de modèles. Son design modulaire permet une substitution facile des algorithmes RL, faisant de cette plateforme un environnement de experimentation flexible.
  • Agent Deep Q-Network basé sur TensorFlow en open source qui apprend à jouer à Atari Breakout en utilisant la répétition d'expériences et des réseaux cibles.
    0
    0
    Qu'est-ce que DQN-Deep-Q-Network-Atari-Breakout-TensorFlow ?
    DQN-Deep-Q-Network-Atari-Breakout-TensorFlow fournit une implémentation complète de l'algorithme DQN adaptée à l'environnement Atari Breakout. Il utilise un réseau neuronal convolutionnel pour approximer les valeurs Q, applique la répétition d'expériences pour briser les corrélations entre observations séquentielles et emploie un réseau cible mis à jour périodiquement pour stabiliser l'entraînement. L'agent suit une politique epsilon-greedy pour l'exploration et peut être entraîné à partir de zéro avec des entrées de pixels bruts. Le dépôt comprend des fichiers de configuration, des scripts d'entraînement pour surveiller la croissance des récompenses, des scripts d'évaluation pour tester les modèles entraînés, et des utilitaires TensorBoard pour visualiser les métriques d'entraînement. Les utilisateurs peuvent ajuster des hyperparamètres tels que le taux d'apprentissage, la taille du buffer de replay et la taille de lot pour expérimenter différentes configurations.
  • Une plateforme open-source Python permettant la conception, l'entraînement et l'évaluation de systèmes d'apprentissage par renforcement multi-agent coopératifs et compétitifs.
    0
    0
    Qu'est-ce que MultiAgentSystems ?
    MultiAgentSystems a été conçu pour simplifier le processus de construction et d’évaluation des applications d’apprentissage par renforcement multi-agent (MARL). La plateforme inclut des implémentations d’algorithmes de pointe tels que MADDPG, QMIX, VDN, ainsi que la formation centralisée avec une exécution décentralisée. Elle propose des wrappers d’environnement modulaires compatibles avec OpenAI Gym, des protocoles de communication pour l’interaction des agents et des utilitaires de journalisation pour suivre des métriques telles que la modulation des récompenses et les taux de convergence. Les chercheurs peuvent personnaliser l’architecture des agents, ajuster les hyperparamètres et simuler des scénarios comprenant la navigation coopérative, l’allocation de ressources et des jeux adverses. Avec un support intégré pour PyTorch, l’accélération GPU et l’intégration avec TensorBoard, MultiAgentSystems accélère l’expérimentation et la mise en place de benchmarks dans des domaines multi-agent collaboratifs et compétitifs.
  • Un cadre Python permettant la conception, la simulation et l'apprentissage par renforcement de systèmes multi-agents coopératifs.
    0
    0
    Qu'est-ce que MultiAgentModel ?
    MultiAgentModel fournit une API unifiée pour définir des environnements personnalisés et des classes d'agents pour des scénarios multi-agents. Les développeurs peuvent spécifier les espaces d'observation et d'action, les structures de récompense et les canaux de communication. La prise en charge intégrée d'algorithmes RL populaires comme PPO, DQN et A2C permet un entraînement avec une configuration minimale. Les outils de visualisation en temps réel aident à surveiller les interactions des agents et les métriques de performance. L'architecture modulaire garantit une intégration facile de nouveaux algorithmes et modules personnalisés. Elle inclut également un système de configuration flexible pour l'ajustement des hyperparamètres, des utilitaires de journalisation pour le suivi des expériences, et la compatibilité avec les environnements OpenAI Gym pour une portabilité transparente. Les utilisateurs peuvent collaborer sur des environnements partagés et rejouer des sessions enregistrées pour analyse.
Vedettes