Outils OpenAI Gym simples et intuitifs

Explorez des solutions OpenAI Gym conviviales, conçues pour simplifier vos projets et améliorer vos performances.

OpenAI Gym

  • Gym-Recsys fournit des environnements OpenAI Gym personnalisables pour une formation évolutive et une évaluation des agents de recommandation par apprentissage par renforcement
    0
    0
    Qu'est-ce que Gym-Recsys ?
    Gym-Recsys est une boîte à outils qui encapsule des tâches de recommandation dans des environnements OpenAI Gym, permettant aux algorithmes d'apprentissage par renforcement d'interagir étape par étape avec des matrices utilisateur-élément simulées. Il fournit des générateurs de comportements utilisateur synthétiques, supporte le chargement de datasets populaires et livre des métriques standard comme Precision@K et NDCG. Les utilisateurs peuvent personnaliser les fonctions de récompense, les modèles utilisateur et les pools d’objets pour expérimenter différentes stratégies de recommandation RL de manière reproductible.
  • Une collection d'environnements de mondes en grille personnalisables compatibles avec OpenAI Gym pour le développement et le test d'algorithmes d'apprentissage par renforcement.
    0
    0
    Qu'est-ce que GridWorldEnvs ?
    GridWorldEnvs propose une suite complète d'environnements de mondes en grille pour soutenir la conception, le test et la benchmarkisation des systèmes d'apprentissage par renforcement et multi-agents. Les utilisateurs peuvent facilement configurer les dimensions de la grille, les positions de départ des agents, les emplacements cibles, obstacles, structures de récompense et espaces d'actions. La bibliothèque inclut des modèles prêts à l'emploi tels que la navigation classique, l'évitement d'obstacles et les tâches coopératives, tout en permettant la définition de scénarios personnalisés via JSON ou classes Python. Une intégration transparente avec l'API OpenAI Gym permet d'appliquer directement des algorithmes RL standards. De plus, GridWorldEnvs supporte des expérimentations à agent unique ou multi-agents, des outils de journalisation et de visualisation pour le suivi des performances des agents.
  • gym-fx fournit un environnement OpenAI Gym personnalisable pour former et évaluer des agents d'apprentissage par renforcement pour les stratégies de trading Forex.
    0
    0
    Qu'est-ce que gym-fx ?
    gym-fx est une bibliothèque Python open-source qui implémente un environnement de trading Forex simulé utilisant l'interface OpenAI Gym. Elle offre un support pour plusieurs paires de devises, l'intégration de flux de prix historiques, des indicateurs techniques et des fonctions de récompense entièrement personnalisables. En fournissant une API normalisée, gym-fx simplifie le benchmarking et le développement d'algorithmes d'apprentissage par renforcement pour le trading algorithmique. Les utilisateurs peuvent configurer le glissement de marché, les coûts de transaction et les espaces d'observation pour reproduire de près des scénarios de trading en direct, facilitant le développement et l'évaluation de stratégies robustes.
  • gym-llm offre des environnements de style gym pour évaluer et former des agents LLM sur des tâches conversationnelles et de prise de décision.
    0
    0
    Qu'est-ce que gym-llm ?
    gym-llm étend l’écosystème OpenAI Gym aux grands modèles linguistiques en définissant des environnements textuels où les agents LLM interagissent via des invites et des actions. Chaque environnement suit les conventions step, reset, et render de Gym, émettant des observations sous forme de texte et acceptant des réponses générées par le modèle comme actions. Les développeurs peuvent créer des tâches personnalisées en spécifiant des modèles d’invite, des calculs de récompense et des conditions de fin, permettant des benchmarks avancés en prise de décision et en conversation. L’intégration avec des librairies RL populaires, des outils de journalisation, et des métriques d’évaluation configurables facilite des expérimentations de bout en bout. Que ce soit pour évaluer la capacité d’un LLM à résoudre des puzzles, gérer des dialogues ou naviguer dans des tâches structurées, gym-llm fournit un cadre standardisé et reproductible pour la recherche et le développement d’agents linguistiques avancés.
  • Un environnement OpenAI Gym basé sur Python offrant des mondes en grille multi-piece personnalisables pour la recherche sur la navigation et l'exploration des agents d'apprentissage par renforcement.
    0
    0
    Qu'est-ce que gym-multigrid ?
    gym-multigrid fournit une série d'environnements en grille personnalisables conçus pour la navigation multi-chambres et les tâches d'exploration en apprentissage par renforcement. Chaque environnement se compose de pièces interconnectées remplies d'objets, de clés, de portes et d'obstacles. Les utilisateurs peuvent ajuster la taille de la grille, la configuration des pièces et le placement des objets de manière programmatique. La bibliothèque prend en charge les modes d'observation complets ou partiels, offrant des représentations d'état RGB ou matricielles. Les actions incluent le déplacement, l'interaction avec les objets et la manipulation des portes. En l'intégrant comme environnement Gym, les chercheurs peuvent exploiter n'importe quel agent compatible Gym pour former et évaluer des algorithmes sur des tâches telles que des puzzles clé-portes, la récupération d'objets ou la planification hiérarchique. La conception modulaire et les dépendances minimales de gym-multigrid en font un outil idéal pour comparer de nouvelles stratégies d'IA.
  • Framework Python open-source utilisant NEAT neuroévolution pour entraîner des agents IA à jouer automatiquement à Super Mario Bros.
    0
    0
    Qu'est-ce que mario-ai ?
    Le projet mario-ai propose une pipeline complète pour développer des agents IA afin de maîtriser Super Mario Bros. en utilisant la neuroévolution. En intégrant une implémentation NEAT basée sur Python avec l’environnement OpenAI Gym SuperMario, il permet aux utilisateurs de définir des critères de fitness, des taux de mutation, et des topologies de réseaux personnalisés. Pendant l’entraînement, le framework évalue des générations de réseaux neuronaux, sélectionne les génomes performants, et fournit une visualisation en temps réel du jeu et de l’évolution du réseau. De plus, il supporte la sauvegarde et le chargement de modèles entraînés, l’exportation des meilleurs génomes, et la génération de rapports détaillés de performance. Chercheurs, éducateurs et amateurs peuvent étendre le code à d’autres environnements de jeux, expérimenter avec des stratégies évolutionnaires, et benchmarker le progrès de l’apprentissage IA à travers différents niveaux.
  • Un environnement de simulation Python open-source pour former la commande coopérative de nuées de drones avec l'apprentissage par renforcement multi-agent.
    0
    0
    Qu'est-ce que Multi-Agent Drone Environment ?
    L'environnement multi-agent pour drones est un package Python proposant une simulation multi-agent configurable pour les nuées de UAV, basé sur OpenAI Gym et PyBullet. Les utilisateurs définissent plusieurs agents drones avec des modèles cinématiques et dynamiques pour explorer des tâches coopératives telles que le vol en formation, le suivi de cibles et l’évitement d’obstacles. L’environnement supporte la configuration modulaire des tâches, une détection de collision réaliste et l’émulation des capteurs, tout en permettant des fonctions de récompense personnalisées et des politiques décentralisées. Les développeurs peuvent intégrer leurs propres algorithmes d'apprentissage par renforcement, évaluer les performances sous divers scénarios et visualiser en temps réel les trajectoires et métriques des agents. Son design open-source encourage la contribution communautaire, le rendant idéal pour la recherche, l'enseignement et le prototypage de solutions avancées de contrôle multi-agent.
  • Un cadre Python open-source proposant divers environnements d'apprentissage par renforcement multi-agent pour l'entraînement et le benchmarking d'agents AI.
    0
    0
    Qu'est-ce que multiagent_envs ?
    multiagent_envs offre un ensemble modulaire d'environnements basés sur Python adaptés à la recherche et au développement en apprentissage par renforcement multi-agent. Il inclut des scénarios comme la navigation coopérative, la prédation, les dilemmes sociaux et des arènes compétitives. Chaque environnement permet de définir le nombre d'agents, les caractéristiques d'observation, les fonctions de récompense et la dynamique de collision. Le framework s'intègre facilement avec des bibliothèques RL populaires telles que Stable Baselines et RLlib, permettant des boucles d'entraînement vectorisées, une exécution parallèle et une journalisation facile. Les utilisateurs peuvent étendre des scénarios existants ou en créer de nouveaux via une API simple, accélérant l'expérimentation avec des algorithmes comme MADDPG, QMIX et PPO dans un environnement cohérent et reproductible.
  • Un cadre d'apprentissage par renforcement pour former des politiques de navigation multi-robot sans collision dans des environnements simulés.
    0
    0
    Qu'est-ce que NavGround Learning ?
    NavGround Learning fournit une boîte à outils complète pour le développement et la benchmarking d'agents d'apprentissage par renforcement dans les tâches de navigation. Elle supporte la simulation multi-agent, la modélisation des collisions ainsi que des capteurs et actionneurs personnalisables. Les utilisateurs peuvent choisir parmi des modèles de politiques prédéfinis ou implémenter leurs propres architectures, s'entraîner avec des algorithmes RL de pointe et visualiser les métriques de performance. Son intégration avec OpenAI Gym et Stable Baselines3 facilite la gestion des expériences, tandis que ses outils de journalisation et de visualisation intégrés permettent une analyse approfondie du comportement des agents et de la dynamique d'apprentissage.
  • PyGame Learning Environment fournit une collection d'environnements RL basés sur Pygame pour entraîner et évaluer des agents IA dans des jeux classiques.
    0
    0
    Qu'est-ce que PyGame Learning Environment ?
    PyGame Learning Environment (PLE) est un framework Python open-source conçu pour simplifier le développement, le test et le benchmarking des agents d'apprentissage par renforcement dans des scénarios de jeu personnalisés. Il fournit une collection de jeux légers basés sur Pygame avec un support intégré pour l'observation des agents, les espaces d'actions discrets et continus, la modulation des récompenses et le rendu de l'environnement. PLE dispose d'une API facile à utiliser compatible avec les wrappers OpenAI Gym, permettant une intégration transparente avec des bibliothèques RL populaires telles que Stable Baselines et TensorForce. Les chercheurs et les développeurs peuvent personnaliser les paramètres de jeu, implémenter de nouveaux jeux et exploiter des environnements vectoriels pour un entraînement accéléré. Avec une contribution communautaire active et une documentation extensive, PLE sert de plateforme polyvalente pour la recherche académique, l'éducation et le prototypage d'applications RL réelles.
  • Un cadre Python permettant la conception, la simulation et l'apprentissage par renforcement de systèmes multi-agents coopératifs.
    0
    0
    Qu'est-ce que MultiAgentModel ?
    MultiAgentModel fournit une API unifiée pour définir des environnements personnalisés et des classes d'agents pour des scénarios multi-agents. Les développeurs peuvent spécifier les espaces d'observation et d'action, les structures de récompense et les canaux de communication. La prise en charge intégrée d'algorithmes RL populaires comme PPO, DQN et A2C permet un entraînement avec une configuration minimale. Les outils de visualisation en temps réel aident à surveiller les interactions des agents et les métriques de performance. L'architecture modulaire garantit une intégration facile de nouveaux algorithmes et modules personnalisés. Elle inclut également un système de configuration flexible pour l'ajustement des hyperparamètres, des utilitaires de journalisation pour le suivi des expériences, et la compatibilité avec les environnements OpenAI Gym pour une portabilité transparente. Les utilisateurs peuvent collaborer sur des environnements partagés et rejouer des sessions enregistrées pour analyse.
  • Environnement d'apprentissage par renforcement multi-agent compatible Gym offrant des scénarios personnalisables, des récompenses et la communication entre agents.
    0
    0
    Qu'est-ce que DeepMind MAS Environment ?
    DeepMind MAS Environment est une bibliothèque Python fournissant une interface standardisée pour construire et simuler des tâches d'apprentissage par renforcement multi-agent. Elle permet aux utilisateurs de configurer le nombre d'agents, de définir les espaces d'observation et d'action, et de personnaliser les structures de récompense. Le framework supporte les canaux de communication entre agents, la journalisation des performances et les capacités de rendu. Les chercheurs peuvent intégrer sans problème DeepMind MAS Environment avec des bibliothèques RL populaires comme TensorFlow et PyTorch pour benchmarker de nouveaux algorithmes, tester des protocoles de communication et analyser les domaines de contrôle discret et continu.
  • Une plateforme open-source permettant la formation, le déploiement et l’évaluation de modèles d'apprentissage par renforcement multi-agents pour des tâches coopératives et compétitives.
    0
    0
    Qu'est-ce que NKC Multi-Agent Models ?
    NKC Multi-Agent Models fournit aux chercheurs et développeurs une boîte à outils complète pour concevoir, entraîner et évaluer des systèmes d'apprentissage par renforcement multi-agents. Elle dispose d'une architecture modulaire où les utilisateurs définissent des politiques agents personnalisées, des dynamiques d’environnement et des structures de récompense. L’intégration transparente avec OpenAI Gym permet un prototypage rapide, tandis que le support de TensorFlow et PyTorch offre une flexibilité dans le choix des moteurs d’apprentissage. Le framework inclut des utilitaires pour la rejouabilité d’expérience, la formation centralisée avec exécution décentralisée, et la formation distribuée sur plusieurs GPUs. Des modules de journalisation et de visualisation étendus capturent les métriques de performance, facilitant le benchmarking et l’ajustement des hyperparamètres. En simplifiant la mise en place de scénarios coopératifs, compétitifs et mixtes, NKC Multi-Agent Models accélère l’expérimentation dans des domaines comme les véhicules autonomes, les essaims robotiques et l’IA de jeu.
  • Vanilla Agents fournit des implémentations prêtes à l'emploi d'agents RL DQN, PPO et A2C avec des pipelines de formation personnalisables.
    0
    0
    Qu'est-ce que Vanilla Agents ?
    Vanilla Agents est un cadre léger basé sur PyTorch qui fournit des implémentations modulaires et extensibles d'agents d'apprentissage par renforcement de base. Il supporte des algorithmes comme DQN, Double DQN, PPO et A2C, avec des wrappers d'environnement adaptables compatibles avec OpenAI Gym. Les utilisateurs peuvent configurer les hyperparamètres, enregistrer les métriques d'entraînement, sauvegarder les points de contrôle et visualiser les courbes d'apprentissage. La base de code est organisée pour la clarté, ce qui le rend idéal pour le prototypage de recherche, un usage éducatif et la mise en référence de nouvelles idées en RL.
  • Un agent RL open-source pour les duels Yu-Gi-Oh, offrant simulation d'environnement, entraînement de politique et optimisation de stratégie.
    0
    0
    Qu'est-ce que YGO-Agent ?
    Le cadre YGO-Agent permet aux chercheurs et aux passionnés de développer des bots IA qui jouent au jeu de cartes Yu-Gi-Oh en utilisant l'apprentissage par renforcement. Il enveloppe le simulateur de jeu YGOPRO dans un environnement compatible OpenAI Gym, définissant des représentations d'état telles que la main, le terrain et les points de vie, ainsi que des représentations d'action incluant l'invocation, l'activation de sorts/pièges et l'attaque. Les récompenses sont basées sur les résultats de victoire/défaite, les dégâts infligés et la progression du jeu. L'architecture de l'agent utilise PyTorch pour implémenter DQN, avec des options pour des architectures de réseau personnalisées, la rejouabilité d'expérience et l'exploration epsilon-greedy. Les modules de journalisation enregistrent les courbes d'entraînement, les taux de victoire et les logs de mouvements détaillés pour l'analyse. Le cadre est modulaire, permettant aux utilisateurs de remplacer ou d'étendre des composants tels que la fonction de récompense ou l'espace d'action.
  • Relie le simulateur de vol X-Plane à OpenAI Gym pour former des agents d'apprentissage par renforcement pour un contrôle réaliste des avions via Python.
    0
    0
    Qu'est-ce que GYM_XPLANE_ML ?
    GYM_XPLANE_ML encapsule le simulateur de vol X-Plane en tant qu'environnement OpenAI Gym, exposant la commande de l'accélérateur, de l'élévateur, de l'aileron et du gouvernail comme espaces d'action et des paramètres de vol tels que l'altitude, la vitesse et l'orientation comme observations. Les utilisateurs peuvent programmer des flux de travail d'entraînement en Python, choisir des scénarios prédéfinis ou personnaliser des waypoints, des conditions météorologiques et des modèles d'avion. La bibliothèque gère la communication à faible latence avec X-Plane, exécute des épisodes en mode synchrone, enregistre les performances et supporte le rendu en temps réel pour le débogage. Elle permet le développement itératif d'autopilotes basés sur ML et d'algorithmes RL expérimentaux dans un environnement de vol haute fidélité.
  • Une environnement Python OpenAI Gym simulant la chaîne d'approvisionnement du jeu de la bière pour former et évaluer des agents RL.
    0
    0
    Qu'est-ce que Beer Game Environment ?
    L'environnement Beer Game fournit une simulation en temps discret d'une chaîne d'approvisionnement en bière à quatre étapes — détaillant, grossiste, distributeur, fabricant — avec une interface OpenAI Gym. Les agents reçoivent des observations incluant le stock en main, le stock en pipeline et les commandes entrantes, puis produisent des quantités de commande. L'environnement calcule les coûts par étape pour la détention d'inventaire et les retards, et supporte des distributions de demande et des délais de livraison personnalisables. Il s'intègre parfaitement avec des bibliothèques RL populaires comme Stable Baselines3, permettant aux chercheurs et éducateurs de benchmarker et former des algorithmes sur des tâches d'optimisation de la chaîne d'approvisionnement.
  • Un framework Python haute performance fournissant des algorithmes de renforcement rapide et modulaire avec prise en charge multi-environnements.
    0
    0
    Qu'est-ce que Fast Reinforcement Learning ?
    Fast Reinforcement Learning est un framework Python spécialisé visant à accélérer le développement et l'exécution d'agents d'apprentissage par renforcement. Il offre une prise en charge prête à l'emploi pour des algorithmes populaires tels que PPO, A2C, DDPG et SAC, associée à une gestion d'environnements vectorisés à haut débit. Les utilisateurs peuvent facilement configurer des réseaux de politiques, personnaliser des boucles d'apprentissage et exploiter l'accélération GPU pour des expérimentations à grande échelle. La conception modulaire de la bibliothèque assure une intégration transparente avec les environnements OpenAI Gym, permettant aux chercheurs et praticiens de prototyper, de benchmarker et de déployer des agents dans une variété de tâches de contrôle, de jeux et de simulation.
  • Un agent de trading alimenté par l'IA utilisant l'apprentissage par renforcement profond pour optimiser les stratégies de trading d'actions et de crypto en marchés en direct.
    0
    0
    Qu'est-ce que Deep Trading Agent ?
    Deep Trading Agent fournit une pipeline complète pour le trading algorithmique : ingestion de données, simulation d'environnement conforme à OpenAI Gym, formation de modèles RL profonds (par ex., DQN, PPO, A2C), visualisation des performances, backtesting sur des données historiques, et déploiement en direct via des connecteurs API de courtier. Les utilisateurs peuvent définir des métriques de récompense personnalisées, ajuster les hyperparamètres, et surveiller les performances de l'agent en temps réel. L'architecture modulaire supporte les marchés d'actions, Forex et crypto-monnaies, avec une extension facile vers de nouvelles classes d'actifs.
Vedettes