Herramientas réglage des hyperparamètres de alto rendimiento

Accede a soluciones réglage des hyperparamètres que te ayudarán a completar tareas complejas con facilidad.

réglage des hyperparamètres

  • Un marco de RL que ofrece herramientas de entrenamiento y evaluación de PPO, DQN para desarrollar agentes competitivos en el juego Pommerman.
    0
    0
    ¿Qué es PommerLearn?
    PommerLearn permite a investigadores y desarrolladores entrenar bots RL multi-agente en el entorno de juego Pommerman. Incluye implementaciones listas para usar de algoritmos populares (PPO, DQN), archivos de configuración flexibles para hiperparámetros, registro automático y visualización de métricas de entrenamiento, guardado de modelos y scripts de evaluación. Su arquitectura modular facilita la extensión con nuevos algoritmos, la personalización de entornos y la integración con bibliotecas ML estándar como PyTorch.
  • Vanilla Agents proporciona implementaciones listas para usar de agentes RL DQN, PPO y A2C con pipelines de entrenamiento personalizables.
    0
    0
    ¿Qué es Vanilla Agents?
    Vanilla Agents es un marco liviano basado en PyTorch que proporciona implementaciones modulares y extensibles de agentes de aprendizaje por refuerzo fundamentales. Soporta algoritmos como DQN, Double DQN, PPO y A2C, con envoltorios de entorno en plug-in compatibles con OpenAI Gym. Los usuarios pueden configurar hiperparámetros, registrar métricas de entrenamiento, guardar puntos de control y visualizar curvas de aprendizaje. La base de código está organizada para la claridad, siendo ideal para prototipado de investigación, uso educativo y benchmarking de nuevas ideas en RL.
  • Acme es un marco de aprendizaje por refuerzo modular que ofrece componentes reutilizables de agentes y pipelines de entrenamiento distribuidos eficientes.
    0
    0
    ¿Qué es Acme?
    Acme es un marco basado en Python que simplifica el desarrollo y la evaluación de agentes de aprendizaje por refuerzo. Ofrece una colección de implementaciones predefinidas de agentes (por ejemplo, DQN, PPO, SAC), envoltorios de entornos, buffers de repetición y motores de ejecución distribuidos. Los investigadores pueden combinar componentes para prototipar nuevos algoritmos, monitorear métricas de entrenamiento con registro incorporado y aprovechar pipelines distribuidos escalables para experimentos a gran escala. Acme se integra con TensorFlow y JAX, soporta entornos personalizados mediante interfaces OpenAI Gym, y incluye utilidades para guardar, evaluar y configurar hiperparámetros.
  • Un agente de trading impulsado por IA que utiliza aprendizaje por refuerzo profundo para optimizar estrategias de trading de acciones y criptomonedas en mercados en vivo.
    0
    0
    ¿Qué es Deep Trading Agent?
    Deep Trading Agent proporciona un flujo completo para trading algorítmico: ingesta de datos, simulación de entorno compatible con OpenAI Gym, entrenamiento de modelos de RL profundo (por ejemplo, DQN, PPO, A2C), visualización del rendimiento, backtesting con datos históricos y despliegue en vivo a través de conectores API de brokers. Los usuarios pueden definir métricas de recompensa personalizadas, ajustar hiperparámetros y monitorear el rendimiento del agente en tiempo real. La arquitectura modular soporta mercados de acciones, divisas y criptomonedas y permite una extensión sencilla a nuevas clases de activos.
  • Framework de RL basado en Python que implementa deep Q-learning para entrenar un agente IA en el juego de dinosaurios sin conexión de Chrome.
    0
    0
    ¿Qué es Dino Reinforcement Learning?
    Dino Reinforcement Learning proporciona un conjunto completo de herramientas para entrenar a un agente IA para jugar el juego de dinosaurios de Chrome mediante aprendizaje por refuerzo. Al integrarse con una instancia de Chrome sin interfaz a través de Selenium, captura cuadros en tiempo real del juego y los procesa en representaciones de estado optimizadas para entradas de redes Q profundas. El marco incluye módulos para memoria de reproducción, exploración epsilon-greedy, modelos de redes neuronales convolucionales y bucles de entrenamiento con hiperparámetros personalizables. Los usuarios pueden monitorear el progreso del entrenamiento a través de registros en la consola y guardar puntos de control para evaluación posterior. Tras el entrenamiento, el agente puede desplegarse para jugar automáticamente en vivo o compararse con diferentes arquitecturas de modelos. El diseño modular permite una sustitución sencilla de algoritmos RL, haciendo de esta plataforma un entorno flexible para experimentación.
  • Agente de Deep Q-Network basado en TensorFlow de código abierto que aprende a jugar Atari Breakout usando repetición de experiencias y redes objetivo.
    0
    0
    ¿Qué es DQN-Deep-Q-Network-Atari-Breakout-TensorFlow?
    DQN-Deep-Q-Network-Atari-Breakout-TensorFlow proporciona una implementación completa del algoritmo DQN adaptada para el entorno Atari Breakout. Utiliza una red neuronal convolucional para aproximar valores Q, aplica repetición de experiencias para romper correlaciones entre observaciones secuenciales y emplea una red objetivo actualizada periódicamente para estabilizar el entrenamiento. El agente sigue una política epsilon-greedy para la exploración y puede entrenarse desde cero con entrada de píxeles en bruto. El repositorio incluye archivos de configuración, scripts de entrenamiento para monitorear el crecimiento de recompensas, scripts de evaluación para probar modelos entrenados y utilidades TensorBoard para visualizar métricas de entrenamiento. Los usuarios pueden ajustar hiperparámetros como tasa de aprendizaje, tamaño del buffer de repetición y tamaño de lotes para experimentar con diferentes configuraciones.
  • Un marco de código abierto en Python que permite el diseño, entrenamiento y evaluación de sistemas de aprendizaje por refuerzo multiagente cooperativos y competitivos.
    0
    0
    ¿Qué es MultiAgentSystems?
    MultiAgentSystems está diseñado para simplificar el proceso de construir y evaluar aplicaciones de aprendizaje por refuerzo multiagente (MARL). La plataforma incluye implementaciones de algoritmos de vanguardia como MADDPG, QMIX, VDN, además de entrenamiento centralizado con ejecución descentralizada. Incluye envoltorios modulares de entornos compatibles con OpenAI Gym, protocolos de comunicación para interacción entre agentes y utilidades de registro para rastrear métricas como la forma del premio y tasas de convergencia. Los investigadores pueden personalizar arquitecturas de agentes, ajustar hiperparámetros y simular escenarios como navegación cooperativa, asignación de recursos y juegos adversarios. Con soporte integrado para PyTorch, aceleración GPU e integración con TensorBoard, MultiAgentSystems acelera la experimentación y evaluación comparativa en dominios multiagente colaborativos y competitivos.
  • Un marco de trabajo en Python que permite el diseño, la simulación y el aprendizaje por refuerzo de sistemas multiagente cooperativos.
    0
    0
    ¿Qué es MultiAgentModel?
    MultiAgentModel proporciona una API unificada para definir entornos personalizados y clases de agentes para escenarios multiagentes. Los desarrolladores pueden especificar espacios de observación y acción, estructuras de recompensa y canales de comunicación. La compatibilidad con algoritmos RL populares como PPO, DQN y A2C permite entrenar con una configuración mínima. Las herramientas de visualización en tiempo real ayudan a monitorear las interacciones de los agentes y las métricas de rendimiento. La arquitectura modular garantiza una fácil integración de nuevos algoritmos y módulos personalizados. También incluye un sistema de configuración flexible para ajuste de hiperparámetros, utilidades de registro para seguimiento de experimentos y compatibilidad con entornos OpenAI Gym para portabilidad sin problemas. Los usuarios pueden colaborar en entornos compartidos y reproducir sesiones registradas para análisis.
Destacados