Herramientas policy optimization de alto rendimiento

Accede a soluciones policy optimization que te ayudarán a completar tareas complejas con facilidad.

policy optimization

  • MAPF_G2RL es un marco en Python que entrena agentes de aprendizaje por refuerzo profundo para una búsqueda de caminos multi-agente eficiente en grafos.
    0
    0
    ¿Qué es MAPF_G2RL?
    MAPF_G2RL es un marco de investigación de código abierto que conecta la teoría de grafos y el aprendizaje por refuerzo profundo para abordar el problema de búsqueda de caminos multi-agente (MAPF). Codifica nodos y aristas en representaciones vectoriales, define funciones de recompensa espacial y sensibles a colisiones, y soporta diversos algoritmos RL como DQN, PPO y A2C. El marco automatiza la creación de escenarios generando grafos aleatorios o importando mapas del mundo real, y organiza ciclos de entrenamiento que optimizan políticas para múltiples agentes simultáneamente. Tras el aprendizaje, los agentes son evaluados en entornos simulados para medir la optimalidad de caminos, el tiempo de Makespan y tasas de éxito. Su diseño modular permite a investigadores extender componentes básicos, integrar nuevas técnicas MARL y hacer benchmarking contra solucionadores clásicos.
  • Mava es un marco de refuerzo multiagente de código abierto de InstaDeep, que ofrece entrenamiento modular y soporte distribuido.
    0
    0
    ¿Qué es Mava?
    Mava es una biblioteca de código abierto basada en JAX para desarrollar, entrenar y evaluar sistemas de aprendizaje por refuerzo multiagente. Ofrece implementaciones preconstruidas de algoritmos cooperativos y competitivos como MAPPO y MADDPG, junto con bucles de entrenamiento configurables que soportan flujos de trabajo en un solo nodo y distribuidos. Los investigadores pueden importar entornos desde PettingZoo o definir entornos personalizados, y luego usar los componentes modulares de Mava para optimización de políticas, gestión de búferes de repetición y registro de métricas. La arquitectura flexible del marco permite integrar nuevos algoritmos, espacios de observación personalizados y estructuras de recompensa. Aprovechando las capacidades de auto-vectorización y aceleración de hardware de JAX, Mava garantiza experimentos eficientes a gran escala y comparación reproducible en diversos escenarios multiagente.
  • MAGAIL permite a múltiples agentes imitar demostraciones de expertos mediante entrenamiento adversarial generativo, facilitando el aprendizaje de políticas multi-agente flexible.
    0
    0
    ¿Qué es MAGAIL?
    MAGAIL implementa una extensión multi-agente del aprendizaje por imitación adversarial generativa, permitiendo a grupos de agentes aprender comportamientos coordinados a partir de demostraciones de expertos. Construido en Python con soporte para PyTorch (o variantes TensorFlow), MAGAIL consiste en módulos de política (generador) y discriminador entrenados en un bucle adversarial. Los agentes generan trayectorias en entornos como OpenAI Multi-Agent Particle Environment o PettingZoo, que el discriminador evalúa para verificar su autenticidad en comparación con datos de expertos. Mediante actualizaciones iterativas, las redes de políticas convergen hacia estrategias similares a las de los expertos sin funciones de recompensa explícitas. El diseño modular de MAGAIL permite personalizar arquitecturas de red, ingestión de datos de expertos, integración de entornos y hiperparámetros de entrenamiento. Además, la programación y visualización en TensorBoard facilitan el monitoreo y análisis del progreso del aprendizaje multi-agente y los puntos de referencia de rendimiento.
  • Jason-RL equipa los agentes Jason BDI con aprendizaje por refuerzo, permitiendo decisiones adaptativas basadas en Q-learning y SARSA a través de la experiencia de recompensas.
    0
    0
    ¿Qué es jason-RL?
    Jason-RL añade una capa de aprendizaje por refuerzo al marco multiagente de Jason, permitiendo que los agentes AgentSpeak BDI aprendan políticas de selección de acciones mediante retroalimentación de recompensas. Implementa algoritmos Q-learning y SARSA, soporta la configuración de parámetros de aprendizaje (tasa de aprendizaje, factor de descuento, estrategia de exploración) y registra métricas de entrenamiento. Al definir funciones de recompensa en los planes de agentes y ejecutar simulaciones, los desarrolladores pueden observar cómo los agentes mejoran su toma de decisiones con el tiempo y se adaptan a entornos cambiantes sin codificación manual de políticas.
Destacados