Herramientas kooperative Navigation de alto rendimiento

Accede a soluciones kooperative Navigation que te ayudarán a completar tareas complejas con facilidad.

kooperative Navigation

  • Implementa aprendizaje por refuerzo multi-agente DDPG descentralizado usando PyTorch y Unity ML-Agents para entrenamiento colaborativo de agentes.
    0
    0
    ¿Qué es Multi-Agent DDPG with PyTorch & Unity ML-Agents?
    Este proyecto de código abierto brinda un marco completo de aprendizaje por refuerzo multi-agente construido sobre PyTorch y Unity ML-Agents. Incluye algoritmos DDPG descentralizados, envoltorios de entornos y scripts de entrenamiento. Los usuarios pueden configurar políticas de agentes, redes críticas, buffers de reproducción y trabajadores de entrenamiento en paralelo. Los hooks de registro permiten monitoreo con TensorBoard, mientras que una estructura modular soporta funciones de recompensa y parámetros de entorno personalizables. El repositorio incluye escenas de ejemplo en Unity demostrando tareas de navegación colaborativa, ideal para ampliar y evaluar escenarios multi-agente en simulaciones.
    Características principales de Multi-Agent DDPG with PyTorch & Unity ML-Agents
    • Implementación de DDPG multi-agente descentralizado
    • Integración con Unity ML-Agents
    • Hiperparámetros y funciones de recompensa personalizables
    • Registro y visualización en TensorBoard
    • Escenarios de ejemplo en Unity para tareas colaborativas
  • Un marco de código abierto en Python que permite el diseño, entrenamiento y evaluación de sistemas de aprendizaje por refuerzo multiagente cooperativos y competitivos.
    0
    0
    ¿Qué es MultiAgentSystems?
    MultiAgentSystems está diseñado para simplificar el proceso de construir y evaluar aplicaciones de aprendizaje por refuerzo multiagente (MARL). La plataforma incluye implementaciones de algoritmos de vanguardia como MADDPG, QMIX, VDN, además de entrenamiento centralizado con ejecución descentralizada. Incluye envoltorios modulares de entornos compatibles con OpenAI Gym, protocolos de comunicación para interacción entre agentes y utilidades de registro para rastrear métricas como la forma del premio y tasas de convergencia. Los investigadores pueden personalizar arquitecturas de agentes, ajustar hiperparámetros y simular escenarios como navegación cooperativa, asignación de recursos y juegos adversarios. Con soporte integrado para PyTorch, aceleración GPU e integración con TensorBoard, MultiAgentSystems acelera la experimentación y evaluación comparativa en dominios multiagente colaborativos y competitivos.
Destacados