Die besten ニューラルネットワークのカスタマイズ-Lösungen für Sie

Finden Sie bewährte ニューラルネットワークのカスタマイズ-Tools, die sowohl für Anfänger als auch für Experten geeignet sind, und steigern Sie Ihre Produktivität.

ニューラルネットワークのカスタマイズ

  • Eine auf Keras basierende Implementierung des Multi-Agent Deep Deterministic Policy Gradient für kooperative und wettbewerbliche Multi-Agenten-RL.
    0
    0
    Was ist MADDPG-Keras?
    MADDPG-Keras liefert einen vollständigen Rahmen für die Forschung im Multi-Agenten-Verstärkungslernen, indem es den MADDPG-Algorithmus in Keras implementiert. Es unterstützt kontinuierliche Aktionsräume, mehrere Agenten und Standardumgebungen von OpenAI Gym. Forscher und Entwickler können neuronale Netzarchitekturen, Trainings-Hyperparameter und Belohnungsfunktionen konfigurieren und Experimente mit eingebautem Logging und Modell-Checkpointing starten, um das Lernen und Benchmarking von Multi-Agenten-Politiken zu beschleunigen.
    MADDPG-Keras Hauptfunktionen
    • Keras- & TensorFlow-Implementierung von MADDPG
    • Unterstützung für kontinuierliche Aktionsräume
    • Konfigurierbare Multi-Agenten-Gym-Umgebungen
    • Logging, TensorBoard-Integration und Checkpointing
    • Anpassbare neuronale Netzarchitekturen
  • Ein Open-Source-Verstärkungslernagent, der PPO verwendet, um StarCraft II über DeepMinds PySC2-Umgebung zu trainieren und zu spielen.
    0
    0
    Was ist StarCraft II Reinforcement Learning Agent?
    Dieses Repository bietet ein End-to-End-Verstärkungslernframework für die Forschung im StarCraft II Gameplay. Der Kernagent verwendet Proximal Policy Optimization (PPO), um Policies-Netzwerke zu erlernen, die Beobachtungsdaten aus der PySC2-Umgebung interpretieren und präzise Spielaktionen ausführen. Entwickler können neuronale Netzwerkschichten, Belohnungsformung und Trainingspläne konfigurieren, um die Leistung zu optimieren. Das System unterstützt Mehrprozessverarbeitung für effiziente Beispelsammlung, Protokollierungstools zur Überwachung der Trainingskurven und Evaluierungsskripte zum Testen trainierter Policies gegen skriptgesteuerte oder integrierte KI-Gegner. Der Code ist in Python geschrieben und nutzt TensorFlow für Modelldefinition und Optimierung. Nutzer können Komponenten wie maßgeschneiderte Belohnungsfunktionen, Zustandsvorverarbeitung oder Netzwerkarchitekturen erweitern, um spezifische Forschungsziele zu verfolgen.
Ausgewählt