Die besten réglage des hyperparamètres-Lösungen für Sie

Finden Sie bewährte réglage des hyperparamètres-Tools, die sowohl für Anfänger als auch für Experten geeignet sind, und steigern Sie Ihre Produktivität.

réglage des hyperparamètres

  • Ein RL-Framework mit PPO-, DQN-Trainings- und Bewertungswerkzeugen für die Entwicklung wettbewerbsfähiger Pommerman-Agenten.
    0
    0
    Was ist PommerLearn?
    PommerLearn ermöglicht Forschern und Entwicklern das Training von Multi-Agenten-RL-Bots in der Pommerman-Umgebung. Es enthält einsatzfertige Implementierungen beliebter Algorithmen (PPO, DQN), flexible Konfigurationsdateien für Hyperparameter, automatische Protokollierung und Visualisierung von Trainingsmetriken, Modell-Checkpointing und Evaluierungsskripte. Die modulare Architektur erleichtert die Erweiterung durch neue Algorithmen, die Anpassung der Umgebung und die Integration mit standardmäßigen ML-Bibliotheken wie PyTorch.
  • Vanilla Agents bietet einsatzbereite Implementierungen von DQN, PPO und A2C RL-Agenten mit anpassbaren Trainingspipelines.
    0
    0
    Was ist Vanilla Agents?
    Vanilla Agents ist ein leichtgewichtiges, auf PyTorch basierendes Framework, das modulare und erweiterbare Implementierungen wesentlicher Reinforcement-Learning-Agenten liefert. Es unterstützt Algorithmen wie DQN, Double DQN, PPO und A2C, mit anpassbaren Umwelt-Wrappern, die mit OpenAI Gym kompatibel sind. Benutzer können Hyperparameter konfigurieren, Trainingsmetriken protokollieren, Checkpoints speichern und Lernkurven visualisieren. Der Code ist klar strukturiert, ideal für Forschungsprototypen, Bildungszwecke und Benchmarking neuer Ideen im RL.
  • Acme ist ein modulares Reinforcement-Learning-Framework, das wiederverwendbare Agentenkomponenten und effiziente verteilte Trainingspipelines bietet.
    0
    0
    Was ist Acme?
    Acme ist ein auf Python basierendes Framework, das die Entwicklung und Bewertung von Reinforcement-Learning-Agenten vereinfacht. Es bietet eine Sammlung von vorgefertigten Agentenimplementierungen (z.B. DQN, PPO, SAC), Umgebungs-Wrapper, Replay-Puffer und verteilte Ausführungsmaschinen. Forscher können Komponenten kombinieren, um neue Algorithmen zu prototypisieren, Trainingsmetriken mit integriertem Logging zu überwachen und skalierbare verteilte Pipelines für groß angelegte Experimente zu nutzen. Acme integriert sich mit TensorFlow und JAX, unterstützt benutzerdefinierte Umgebungen via OpenAI Gym-Interfaces und enthält Hilfsprogramme für Checkpoints, Evaluationen und Hyperparameter-Konfigurationen.
  • Ein KI-gesteuerter Handelsagent, der Deep Reinforcement Learning zur Optimierung von Aktien- und Kryptowährungshandelsstrategien auf Live-Märkten verwendet.
    0
    0
    Was ist Deep Trading Agent?
    Deep Trading Agent bietet eine vollständige Pipeline für algorithmischen Handel: Datenaufnahme, Umweltsimulation gemäß OpenAI Gym, Training von Deep-RL-Modellen (z.B. DQN, PPO, A2C), Leistungsvisualisierung, Backtesting auf historischen Daten und Live-Bereitstellung über Broker-API-Connector. Nutzer können benutzerdefinierte Belohnungsmetriken definieren, Hyperparameter anpassen und die Leistung des Agenten in Echtzeit überwachen. Die modulare Architektur unterstützt Aktien-, Forex- und Kryptowährungsmärkte und ermöglicht eine nahtlose Erweiterung auf neue Asset-Klassen.
  • Python-basiertes RL-Framework, das Deep-Q-Learning implementiert, um einen KI-Agenten für das Offline-Dinosaurierspiel in Chrome zu trainieren.
    0
    0
    Was ist Dino Reinforcement Learning?
    Dino Reinforcement Learning bietet ein umfassendes Werkzeugset zum Trainieren eines KI-Agenten, um das Chrome-Dinosaurierspiel durch reinforcement learning zu spielen. Durch die Integration mit einem headless Chrome-Exemplar über Selenium erfasst es Echtzeit-Spielbilder und verarbeitet sie zu Zustandsdarstellungen, die für Eingaben in tiefe Q-Netzwerke optimiert sind. Das Framework umfasst Module für Replay-Speicher, Epsilon-Greedy-Exploration, Convolutional Neural Network-Modelle und Trainingsschleifen mit anpassbaren Hyperparametern. Nutzer können den Trainingsfortschritt über Konsolenprotokolle überwachen und Checkpoints für die spätere Bewertung speichern. Nach dem Training kann der Agent eingesetzt werden, um Live-Spiele autonom zu spielen oder gegen verschiedene Modellarchitekturen getestet zu werden. Das modulare Design erlaubt einen einfachen Austausch der RL-Algorithmen, was es zu einer flexiblen Plattform für Experimente macht.
  • Open-Source TensorFlow-basierter Deep-Q-Network-Agent, der durch Erfahrungsreplay und Zielnetzwerke lernt, Atari Breakout zu spielen.
    0
    0
    Was ist DQN-Deep-Q-Network-Atari-Breakout-TensorFlow?
    DQN-Deep-Q-Network-Atari-Breakout-TensorFlow bietet eine vollständige Implementierung des DQN-Algorithmus, speziell für die Atari Breakout-Umgebung. Es verwendet ein konvolutionales neuronales Netzwerk zur Approximation der Q-Werte, nutzt Erfahrungsreplay, um Korrelationen zwischen aufeinanderfolgenden Beobachtungen zu unterbrechen, und verwendet ein periodisch aktualisiertes Zielnetzwerk, um das Training zu stabilisieren. Der Agent folgt einer epsilon-greedy-Strategie zur Erkundung und kann von Grund auf mit rohem Pixelinput trainiert werden. Das Repository umfasst Konfigurationsdateien, Trainingsscripte zur Überwachung des Belohnungswachstums, Bewertungsskripte für das Testen trainierter Modelle und TensorBoard-Tools zur Visualisierung von Trainingsmetriken. Nutzer können Hyperparameter wie Lernrate, Replay-Puffergröße und Batch-Größe anpassen, um verschiedene Setups zu testen.
  • Eine Open-Source-Python-Framework, das die Gestaltung, das Training und die Bewertung von kooperativen und wettbewerbsorientierten Multi-Agenten-Verstärkungslernen-Systemen ermöglicht.
    0
    0
    Was ist MultiAgentSystems?
    MultiAgentSystems wurde entwickelt, um den Prozess des Aufbaus und der Bewertung von Multi-Agenten-Verstärkungslern-Anwendungen (MARL) zu vereinfachen. Die Plattform umfasst Implementierungen modernster Algorithmen wie MADDPG, QMIX, VDN sowie zentrale Schulung mit dezentraler Ausführung. Es bietet modulare Umgebungs-Wrapper, die mit OpenAI Gym kompatibel sind, Kommunikationsprotokolle für die Interaktion von Agenten sowie Protokollierungsfunktionen zur Verfolgung von Metriken wie Belohnungsformung und Konvergenzraten. Forscher können Agentenarchitekturen anpassen, Hyperparameter abstimmen und Szenarien wie kooperative Navigation, Ressourcenallokation und Adversarial-Spiele simulieren. Mit integrierter Unterstützung für PyTorch, GPU-Beschleunigung und TensorBoard-Integration beschleunigt MultiAgentSystems Experimente und Benchmarking in kollaborativen und wettbewerbsorientierten Multi-Agenten-Bereichen.
  • Ein Python-Framework, das das Design, die Simulation und das Verstärkungslernen von kooperativen Multi-Agenten-Systemen ermöglicht.
    0
    0
    Was ist MultiAgentModel?
    MultiAgentModel stellt eine einheitliche API bereit, um benutzerdefinierte Umgebungen und Agentenklassen für Multi-Agenten-Szenarien zu definieren. Entwickler können Beobachtungs- und Aktionsräume, Belohnungsstrukturen und Kommunikationskanäle spezifizieren. Unterstützt werden beliebte RL-Algorithmen wie PPO, DQN und A2C, die mit minimaler Konfiguration trainiert werden können. Echtzeit-Visualisierungstools helfen dabei, Agenteninteraktionen und Leistungsmetriken zu überwachen. Die modulare Architektur gewährleistet eine einfache Integration neuer Algorithmen und benutzerdefinierter Module. Es enthält außerdem ein flexibles Konfigurationssystem für Hyperparameter-Optimierung, Logging-Utilities für Versuchsverfolgung und ist kompatibel mit OpenAI Gym-Umgebungen für nahtlose Portabilität. Benutzer können an gemeinsamen Umgebungen zusammenarbeiten und protokollierte Sitzungen zur Analyse wiedergeben.
Ausgewählt